Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on Tutorial, and Perspectives
- PMID: 29222764
- DOI: 10.1007/978-1-4939-7528-0_18
Optimization of Multi-Omic Genome-Scale Models: Methodologies, Hands-on Tutorial, and Perspectives
Abstract
Genome-scale metabolic models are valuable tools for assessing the metabolic potential of living organisms. Being downstream of gene expression, metabolism is increasingly being used as an indicator of the phenotypic outcome for drugs and therapies. We here present a review of the principal methods used for constraint-based modelling in systems biology, and explore how the integration of multi-omic data can be used to improve phenotypic predictions of genome-scale metabolic models. We believe that the large-scale comparison of the metabolic response of an organism to different environmental conditions will be an important challenge for genome-scale models. Therefore, within the context of multi-omic methods, we describe a tutorial for multi-objective optimization using the metabolic and transcriptomics adaptation estimator (METRADE), implemented in MATLAB. METRADE uses microarray and codon usage data to model bacterial metabolic response to environmental conditions (e.g., antibiotics, temperatures, heat shock). Finally, we discuss key considerations for the integration of multi-omic networks into metabolic models, towards automatically extracting knowledge from such models.
Keywords: Data integration; Flux-balance analysis; Machine learning; Multi-objective optimization; Multi-omics; metabolic models.
Similar articles
-
Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling.Brief Bioinform. 2018 Nov 27;19(6):1218-1235. doi: 10.1093/bib/bbx053. Brief Bioinform. 2018. PMID: 28575143
-
A study on multi-omic oscillations in Escherichia coli metabolic networks.BMC Bioinformatics. 2018 Jul 9;19(Suppl 7):194. doi: 10.1186/s12859-018-2175-5. BMC Bioinformatics. 2018. PMID: 30066640 Free PMC article.
-
Multiplex methods provide effective integration of multi-omic data in genome-scale models.BMC Bioinformatics. 2016 Mar 2;17 Suppl 4(Suppl 4):83. doi: 10.1186/s12859-016-0912-1. BMC Bioinformatics. 2016. PMID: 26961692 Free PMC article.
-
Advances in the integration of transcriptional regulatory information into genome-scale metabolic models.Biosystems. 2016 Sep;147:1-10. doi: 10.1016/j.biosystems.2016.06.001. Epub 2016 Jun 7. Biosystems. 2016. PMID: 27287878 Review.
-
Big data in yeast systems biology.FEMS Yeast Res. 2019 Nov 1;19(7):foz070. doi: 10.1093/femsyr/foz070. FEMS Yeast Res. 2019. PMID: 31603503 Review.
Cited by
-
Ten quick tips for avoiding pitfalls in multi-omics data integration analyses.PLoS Comput Biol. 2023 Jul 6;19(7):e1011224. doi: 10.1371/journal.pcbi.1011224. eCollection 2023 Jul. PLoS Comput Biol. 2023. PMID: 37410704 Free PMC article.
-
Oceans as a Source of Immunotherapy.Mar Drugs. 2019 May 10;17(5):282. doi: 10.3390/md17050282. Mar Drugs. 2019. PMID: 31083446 Free PMC article. Review.
-
Human Systems Biology and Metabolic Modelling: A Review-From Disease Metabolism to Precision Medicine.Biomed Res Int. 2019 Jun 9;2019:8304260. doi: 10.1155/2019/8304260. eCollection 2019. Biomed Res Int. 2019. PMID: 31281846 Free PMC article. Review.
-
Social dynamics modeling of chrono-nutrition.PLoS Comput Biol. 2019 Jan 30;15(1):e1006714. doi: 10.1371/journal.pcbi.1006714. eCollection 2019 Jan. PLoS Comput Biol. 2019. PMID: 30699206 Free PMC article.
-
Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs.Antibiotics (Basel). 2019 Sep 20;8(4):157. doi: 10.3390/antibiotics8040157. Antibiotics (Basel). 2019. PMID: 31547063 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources