Long non-coding RNA expression in bladder cancer
- PMID: 29222807
- PMCID: PMC6082308
- DOI: 10.1007/s12551-017-0379-y
Long non-coding RNA expression in bladder cancer
Abstract
The advent of novel high-throughput sequencing methods has facilitated identification of non-coding RNAs with fundamental roles in cellular biological and pathological conditions. A group of these consisting of at least 200 nucleotides are called long non-coding RNAs (lncRNAs). Their participation in the pathogenesis of cancer has been highlighted in recent years. Bladder cancer, one of the most prevalent cancers worldwide, exhibits altered expression levels of several lncRNAs. Several in vitro and in vivo studies have assessed the effects of silencing RNAs on cancer cell phenotypes and in vivo tumor growth. For instance, in vitro studies have shown that nuclear paraspeckle assembly transcript 1 (NEAT1), promoter of CDKN1A antisense DNA damage-activated RNA(PANDAR) and metastasis-associated lung adenocarcinoma transcript 1(MALAT1) have oncogenic effects while Maternally expressed 3 (MEG3) and BRAF activated non-coding RNA (BANCR) are tumor suppressors. Analysis of these data will help to identify a panel of lncRNAs that can be potentially used for both early detection and prognosis in bladder cancer patients. Here, we review the roles of several lncRNAs in the oncogenesis, tumor suppression, early detection, and prognosis of bladder cancer.
Keywords: Bladder cancer; Cancer prognosis; Oncogenesis; Tumor suppression; lncRNA.
Conflict of interest statement
Mohammad Taheri declares that he has no conflicts of interest. Mir Davood Omrani declares that he has no conflicts of interest. Soudeh Ghafouri-Fard declares that she has no conflicts of interest.
This article does not contain any studies with human participants or animals performed by any of the authors.
Figures
References
-
- Chen M, Zhuang C, Liu Y, Li J, Dai F, Xia M, Zhan Y, Lin J, Chen Z, He A, Xu W, Zhao G, Guo Y, Cai Z, Huang W. Tetracycline-inducible shRNA targeting antisense long non-coding RNA HIF1A-AS2 represses the malignant phenotypes of bladder cancer. Canc Lett. 2016;376:155–164. doi: 10.1016/j.canlet.2016.03.037. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
