Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May;87(5):1339-1344.
doi: 10.1016/j.gie.2017.11.029. Epub 2017 Dec 7.

Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging

Affiliations

Computer-aided diagnosis for identifying and delineating early gastric cancers in magnifying narrow-band imaging

Takashi Kanesaka et al. Gastrointest Endosc. 2018 May.

Abstract

Background and aims: Magnifying narrow-band imaging (M-NBI) is important in the diagnosis of early gastric cancers (EGCs) but requires expertise to master. We developed a computer-aided diagnosis (CADx) system to assist endoscopists in identifying and delineating EGCs.

Methods: We retrospectively collected and randomly selected 66 EGC M-NBI images and 60 non-cancer M-NBI images into a training set and 61 EGC M-NBI images and 20 non-cancer M-NBI images into a test set. After preprocessing and partition, we determined 8 gray-level co-occurrence matrix (GLCM) features for each partitioned 40 × 40 pixel block and calculated a coefficient of variation of 8 GLCM feature vectors. We then trained a support vector machine (SVMLv1) based on variation vectors from the training set and examined in the test set. Furthermore, we collected 2 determined P and Q GLCM feature vectors from cancerous image blocks containing irregular microvessels from the training set, and we trained another SVM (SVMLv2) to delineate cancerous blocks, which were compared with expert-delineated areas for area concordance.

Results: The diagnostic performance revealed accuracy of 96.3%, precision (positive predictive value [PPV]) of 98.3%, recall (sensitivity) of 96.7%, and specificity of 95%, at a rate of 0.41 ± 0.01 seconds per image. The performance of area concordance, on a block basis, demonstrated accuracy of 73.8% ± 10.9%, precision (PPV) of 75.3% ± 20.9%, recall (sensitivity) of 65.5% ± 19.9%, and specificity of 80.8% ± 17.1%, at a rate of 0.49 ± 0.04 seconds per image.

Conclusions: This pilot study demonstrates that our CADx system has great potential in real-time diagnosis and delineation of EGCs in M-NBI images.

PubMed Disclaimer

Comment in

LinkOut - more resources