Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Mar;45(3):264-272.
doi: 10.1111/1346-8138.14139. Epub 2017 Dec 10.

Pathogenesis of psoriasis and development of treatment

Affiliations
Review

Pathogenesis of psoriasis and development of treatment

Eisaku Ogawa et al. J Dermatol. 2018 Mar.

Abstract

The pathogenesis of psoriasis can be explained by dysregulation of immunological cell function as well as keratinocyte proliferation/differentiation. Recently, the immunological pathomechanism has been clarified substantially. Whereas T-helper (Th)1 overactivation was thought to induce occurrence of psoriasis, it has been demonstrated that Th17 cells play a key role. Th17 development is maintained by interleukin (IL)-23 mainly produced by dendritic cells. Th17 cells produce various cytokines, including IL-17A, IL-17F and IL-22. IL-17A and IL-22 induce not only keratinocyte proliferation, but also tumor necrosis factor (TNF)-α, chemokine (C-X-C motif) ligand (CXCL)1 and CXCL8 production. TNF-α accelerates the infiltration of inflammatory cells, including lymphocytes, monocytes and neutrophils, from the peripheral blood into skin with dendritic cell activation. In addition, antimicrobial peptides are overexpressed in psoriatic skin lesions, and the antimicrobial peptide, LL-37, activates dendritic cells, which leads to the development of inflammation. Furthermore, activation of nuclear factor-κB signal induces the expression of keratins 6 and 16 in keratinocytes, which are associated with acanthosis and reduced turnover time in the epidermis. The progression of the pathomechanism contributes to the development of new therapies for psoriasis.

Keywords: T-helper 17; interleukin-17; interleukin-23; psoriasis; tumor necrosis factor-α.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms