Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comment
. 2018 Jan 2;128(1):116-119.
doi: 10.1172/JCI98490. Epub 2017 Dec 11.

Creating a graft-friendly environment for stem cells in diseased brains

Comment

Creating a graft-friendly environment for stem cells in diseased brains

Robert Yl Tsai. J Clin Invest. .

Abstract

Most of the adult CNS lacks regenerative activity in terms of both neuron birth and neurite outgrowth. While this regeneration-unfriendly environment of the adult CNS may preserve the existing neuronal circuitry that takes years to develop in higher organisms, it also poses a major obstacle for CNS repair later in life. In this issue of the JCI, Song et al. report on their development of a strategy that uses region-specific and molecularly engineered astrocytes to turn an unfavorable brain environment into a favorable one for engrafted neural stem/progenitor cells (NSC/NPCs). In a rat model of Parkinson's disease (PD), cografting NPCs with midbrain-derived astrocytes engineered to overexpress the transcription factors Nurr1 and Foxa2 promotes maturation and survival of the graft, resulting in therapeutic improvement. The results of this study raise the prospect of using modified astrocytes to improve the survival, maturation, and integration of engrafted NSC/NPCs as a restorative treatment for PD.

PubMed Disclaimer

Conflict of interest statement

Conflict of interest: The author has declared that no conflict of interest exists.

Figures

Figure 1
Figure 1. Host environment influences outcome of NSC/NPC transplantation in a rat model of PD.
NSC/NPCs transplanted along with neurotrophic astrocytes create a friendly environment that allows their differentiation and maturation into mDA neurons. Neurotrophic astrocytes release several classes of molecules that promote mDA neuron differentiation and support long-term survival of these neurons. These include antiinflammatory cytokines (anti-iCKs), such as INF-α, INF-β, IL-1R, CCL17, and CCL22; anti-ROS molecules, including SOD3 and GPX; neurotrophic factors, such as GDNF, SHH, BDNF, NTF3, and Wnts; and neurotrophic ECM proteins, including FN1, COL6A2, ITGβ4, ITGαM, THBS1, and GPC. The presence of stress introduced by the transplantation procedure can cause neurotrophic astrocytes to become immunogenic, creating a hostile environment for transplanted NSC/NPCs. Immunogenic astrocytes hinder the maturation and survival of mDA progenitors through the production of proinflammatory cytokines (iCKs), such as IL-1β, TNF-α, iNOS, IL-6, and CXCL11, and myelin-associated proteins (MAP), including MBP, MOG, and MAG. Induced expression of Nurr1 and Foxa2 tips astrocytes toward a neutrophic phenotype, thereby promoting the maturation and survival of donor cell–derived mDA neurons. TH, tyrosine hydroxylase; nECM, neurotrophic ECM.

Comment on

References

    1. Anderson AJ, Piltti KM, Hooshmand MJ, Nishi RA, Cummings BJ. Preclinical efficacy failure of human CNS-derived stem cells for use in the pathway study of cervical spinal cord injury. Stem Cell Reports. 2017;8(2):249–263. doi: 10.1016/j.stemcr.2016.12.018. - DOI - PMC - PubMed
    1. Marsh SE, et al. HuCNS-SC human NSCs fail to differentiate, form ectopic clusters, and provide no cognitive benefits in a transgenic model of Alzheimer’s disease. Stem Cell Reports. 2017;8(2):235–248. doi: 10.1016/j.stemcr.2016.12.019. - DOI - PMC - PubMed
    1. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ. Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science. 1979;204(4393):643–647. doi: 10.1126/science.571147. - DOI - PubMed
    1. Björklund A, Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 1979;177(3):555–560. doi: 10.1016/0006-8993(79)90472-4. - DOI - PubMed
    1. Lindvall O. Clinical translation of stem cell transplantation in Parkinson’s disease. J Intern Med. 2016;279(1):30–40. doi: 10.1111/joim.12415. - DOI - PubMed

Publication types