Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul;36(7):1807-1817.
doi: 10.1002/jor.23828. Epub 2018 Feb 27.

Canine hip dysplasia: A natural animal model for human developmental dysplasia of the hip

Affiliations
Free article
Review

Canine hip dysplasia: A natural animal model for human developmental dysplasia of the hip

Cecilia Pascual-Garrido et al. J Orthop Res. 2018 Jul.
Free article

Abstract

Developmental dysplasia of the hip (DDH) in humans is a common condition that is associated with hip pain, functional limitations, and secondary osteoarthritis (OA). Surgical treatment of DDH has improved in the last decade, allowing excellent outcomes at short- and mid-term follow-up. Still, the etiology, mechanobiology, and pathology underlying this disease are not well understood. A pre-clinical animal model of DDH could help advance the field with a deeper understanding of specific pathways that initiate hip joint degeneration secondary to abnormal biomechanics. An animal model would also facilitate different interventional treatments that could be tested in a rigorous and controlled environment. The dog model exhibits several important characteristics that make it valuable as a pre-clinical animal model for human DDH. Dogs are naturally prone to develop canine hip dysplasia (CHD), which is treated in a similar manner as in humans. Comparable to human DDH, CHD is considered a pre-OA disease; if left untreated it will progress to OA. However, progression to OA is significantly faster in dogs than humans, with progression to OA within 1-2 years of age, associated with their shorter life span compared to humans. Animal studies could potentially reveal the underlying biochemical pathway(s), which can inform refined treatment modalities and provide opportunities for new treatment and prevention targets. Herein, we review the similarities and differences between the two species and outline the argument supporting CHD as an appropriate pre-clinical model of human DDH. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1807-1817, 2018.

Keywords: canine hip dysplasia; human hip dysplasia; mechanobiology; osteoarthritis; pre-clinical animal model.

PubMed Disclaimer

Publication types

LinkOut - more resources