Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan;4(1):46-54.
doi: 10.1038/s41477-017-0065-x. Epub 2017 Dec 11.

Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway

Affiliations

Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway

Florian A Busch et al. Nat Plants. 2018 Jan.

Abstract

Photorespiration is a major bioengineering target for increasing crop yields as it is often considered a wasteful process. Photorespiratory metabolism is integrated into leaf metabolism and thus may have certain benefits. Here, we show that plants can increase their rate of photosynthetic CO2 uptake when assimilating nitrogen de novo via the photorespiratory pathway by fixing carbon as amino acids in addition to carbohydrates. Plants fed NO3- had higher rates of CO2 assimilation under photorespiratory than low-photorespiratory conditions, while plants lacking NO3- nutrition exhibited lower stimulation of CO2 uptake. We modified the widely used Farquhar, von Caemmerer and Berry photosynthesis model to include the carbon and electron requirements for nitrogen assimilation via the photorespiratory pathway. Our modified model improves predictions of photosynthetic CO2 uptake and of rates of photosynthetic electron transport. The results highlight how photorespiration can improve photosynthetic performance despite reducing the efficiency of Rubisco carboxylation.

PubMed Disclaimer

Publication types