Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 23;12(1):681-688.
doi: 10.1021/acsnano.7b07809. Epub 2017 Dec 22.

Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome Drawbacks of Photodynamic Therapy

Affiliations

Facile Supramolecular Approach to Nucleic-Acid-Driven Activatable Nanotheranostics That Overcome Drawbacks of Photodynamic Therapy

Xingshu Li et al. ACS Nano. .

Abstract

Supramolecular chemistry provides a "bottom-up" method to fabricate nanostructures for biomedical applications. Herein, we report a facile strategy to directly assemble a phthalocyanine photosensitizer (PcS) with an anticancer drug mitoxantrone (MA) to form uniform nanostructures (PcS-MA), which not only display nanoscale optical properties but also have the capability of undergoing nucleic-acid-responsive disassembly. These supramolecular assemblies possess activatable fluorescence emission and singlet oxygen generation associated with the formation of free PcS, mild photothermal heating, and a concomitant chemotherapeutic effect associated with the formation of free MA. In vivo evaluations indicate that PcS-MA nanostructures have a high level of accumulation in tumor tissues, are capable of being used for cancer imaging, and have significantly improved anticancer effect compared to that of PcS. This study demonstrates an attractive strategy for overcoming the limitations of photodynamic cancer therapy.

Keywords: activatable; nanotheranostics; nucleic-acid-responsive disassembly; photodynamic therapy; supramolecular assembly.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources