Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo
- PMID: 29236765
- PMCID: PMC5728520
- DOI: 10.1371/journal.pone.0189428
Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo
Abstract
Cartilage repair and replacement is a major challenge in plastic reconstructive surgery. The development of a process capable of creating a patient-specific cartilage framework would be a major breakthrough. Here, we described methods for creating human cartilage in vivo and quantitatively assessing the proliferative capacity and cartilage-formation ability in mono- and co-cultures of human chondrocytes and human mesenchymal stem cells in a three-dimensional (3D)-bioprinted hydrogel scaffold. The 3D-bioprinted constructs (5 × 5 × 1.2 mm) were produced using nanofibrillated cellulose and alginate in combination with human chondrocytes and human mesenchymal stem cells using a 3D-extrusion bioprinter. Immediately following bioprinting, the constructs were implanted subcutaneously on the back of 48 nude mice and explanted after 30 and 60 days, respectively, for morphological and immunohistochemical examination. During explantation, the constructs were easy to handle, and the majority had retained their macroscopic grid appearance. Constructs consisting of human nasal chondrocytes showed good proliferation ability, with 17.2% of the surface areas covered with proliferating chondrocytes after 60 days. In constructs comprising a mixture of chondrocytes and stem cells, an additional proliferative effect was observed involving chondrocyte production of glycosaminoglycans and type 2 collagen. This clinically highly relevant study revealed 3D bioprinting as a promising technology for the creation of human cartilage.
Conflict of interest statement
Figures
References
-
- Lindahl A. From gristle to chondrocyte transplantation: treatment of cartilage injuries. Philos Trans R Soc Lond B Biol Sci. 2015;370(1680):20140369 doi: 10.1098/rstb.2014.0369 ; PubMed Central PMCID: PMCPMC4633998. - DOI - PMC - PubMed
-
- Firmin F. State-of-the-art autogenous ear reconstruction in cases of microtia. Adv Otorhinolaryngol. 2010;68:25–52. doi: 10.1159/000314561 . - DOI - PubMed
-
- Zopf DA, Iams W, Kim JC, Baker SR, Moyer JS. Full-thickness skin graft overlying a separately harvested auricular cartilage graft for nasal alar reconstruction. JAMA Facial Plast Surg. 2013;15(2):131–4. doi: 10.1001/2013.jamafacial.25 . - DOI - PubMed
-
- Firmin F, Marchac A. A novel algorithm for autologous ear reconstruction. Semin Plast Surg. 2011;25(4):257–64. doi: 10.1055/s-0031-1288917 ; PubMed Central PMCID: PMCPMC3312152. - DOI - PMC - PubMed
-
- Osorno G. Autogenous rib cartilage reconstruction of congenital ear defects: report of 110 cases with Brent's technique. Plast Reconstr Surg. 1999;104(7):1951–62; discussion 63–4. . - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
