Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr;28(3):1750049.
doi: 10.1142/S0129065717500496. Epub 2017 Oct 20.

Static Characteristics of a New Three-Dimensional Linear Homeomorphic Saccade Model

Affiliations

Static Characteristics of a New Three-Dimensional Linear Homeomorphic Saccade Model

Wei Zhou et al. Int J Neural Syst. 2018 Apr.

Abstract

A linear homeomorphic saccade model that produces 3D saccadic eye movements consistent with physiological and anatomical evidence is introduced. Central to the model is the implementation of a time-optimal controller with six linear muscles and pulleys that represent the saccade oculomotor plant. Each muscle is modeled as a parallel combination of viscosity [Formula: see text] and series elasticity [Formula: see text] connected to the parallel combination of active-state tension generator [Formula: see text], viscosity element [Formula: see text], and length tension elastic element [Formula: see text]. Additionally, passive tissues involving the eyeball include a viscosity element [Formula: see text], elastic element [Formula: see text], and moment of inertia [Formula: see text]. The neural input for each muscle is separately maintained, whereas the effective pulling direction is modulated by its respective mid-orbital constraint from the pulleys. Initial parameter values for the oculomotor plant are based on anatomical and physiological evidence. The oculomotor plant uses a time-optimal, 2D commutative neural controller, together with the pulley system that actively functions to implement Listing's law during both static and dynamic conditions. In a companion paper, the dynamic characteristics of the saccade model is analyzed using a time domain system identification technique to estimate the final parameter values and neural inputs from saccade data. An excellent match between the model estimates and the data is observed, whereby a total of 20 horizontal, 5 vertical, and 64 oblique saccades are analyzed.

Keywords: 3D rotational dynamics; Listing’s law; Saccades; extraocular muscles; oculomotor plant; pulley system.

PubMed Disclaimer

LinkOut - more resources