Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Oct:82:51-56.
doi: 10.1016/j.semcdb.2017.11.005. Epub 2017 Dec 11.

Nuclear positioning in skeletal muscle

Affiliations
Free article
Review

Nuclear positioning in skeletal muscle

William Roman et al. Semin Cell Dev Biol. 2018 Oct.
Free article

Abstract

Skeletal muscle cells possess a unique cellular architecture designed to fulfill their contractile function. Muscle cells (also known as myofibers) result from the fusion of hundreds of myoblasts and grow into a fiber of several centimeters in length. Cellular structures gradually become organized during muscle development to raise a mature contractile cell. A hallmark of this singular cell architecture is the position of nuclei at the periphery of the myofiber, below the plasma membrane. Nuclei in myofibers are evenly distributed except in specialized regions like the neuromuscular or myotendinous junctions. Disruption of nuclear positioning results in hindered muscle contraction and occurs in a multitude of muscle disorders as well as in regenerative myofibers. We will explore in this review the step by step nuclear migrations during myogenesis for nuclei to reach their evenly distributed anchored position at the periphery.

Keywords: Cytoskeleton; Muscle development; Muscle disorders; Myogenesis; Nuclear movement.

PubMed Disclaimer

Publication types

LinkOut - more resources