Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Aug 1;30(3):88-97.
doi: 10.1684/mrh.2017.0427.

Magnesium enhances the beneficial effects of NK1 antagonist administration on blood-brain barrier permeability and motor outcome after traumatic brain injury

Affiliations
Free article

Magnesium enhances the beneficial effects of NK1 antagonist administration on blood-brain barrier permeability and motor outcome after traumatic brain injury

Joshua L Ameliorate et al. Magnes Res. .
Free article

Abstract

The current study investigated whether adding magnesium to an NK1 tachykinin receptor antagonist after traumatic brain injury would enhance efficacy to further reduce blood-brain barrier permeability and improve functional recovery compared to either treatment alone. Sprague-Dawley rats were injured using the impact acceleration model of diffuse brain injury, and received either no treatment, MgSO4 (30 mg/kg IV), the NK1 antagonist n-acetyl L tryptophan (2.5 mg/kg IP), or both agents combined. Animals were then killed at either 1, 5, or 24 h postinjury for determination of blood-brain barrier permeability using previously administered Evans blue dye or assessed for functional outcome over a 1-week period using the rotarod motor test. As expected, both MgSO4 and n-acetyl L tryptophan significantly reduced blood-brain barrier permeability and improved functional outcome. However, combined n-acetyl L tryptophan and MgSO4 was more effective at reducing blood-brain barrier permeability (P < 0.05) and improving functional outcome (P < 0.001) compared to the individual compounds. Our results demonstrate that combination therapy with magnesium and an NK1 antagonist may be a more effective therapy for TBI than either compound administered alone.

Keywords: blood–brain barrier; brain injury; magnesium; neurotrauma; substance P.

PubMed Disclaimer

MeSH terms

LinkOut - more resources