Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jul 10:37:11.
doi: 10.1186/s41232-017-0042-9. eCollection 2017.

Regulation of blood vascular permeability in the skin

Affiliations
Review

Regulation of blood vascular permeability in the skin

Sachiko Ono et al. Inflamm Regen. .

Abstract

Regulation of blood vessel permeability is essential for the homeostasis of peripheral tissues. This regulation controls the trafficking of plasma contents, including water, vitamins, ions, hormones, cytokines, amyloids, lipoproteins, carrier proteins, and immunoglobulins. The properties of blood vessels vary among tissues based on their structural differences: continuous, fenestrated, or sinusoidal. These three types of blood vessels have different charge and size barrier properties. The anionic luminal glycocalyx layer on endothelial cells establishes the "charge barrier" that repels the attachment of negatively charged blood cells and plasma molecules. In contrast, the "size barrier" of blood vessels largely relies on the interendothelial junctions (IEJs) between endothelial cells, which define the paracellular permeability. As in most peripheral tissues, blood capillaries in the skin are composed of continuous and/or fenestrated blood vessels that have relatively tighter IEJs compared to those in the internal organs. Small vesicles in the capillary endothelium were discovered in the 1950s, and studies have since confirmed that blood endothelial cells transport the plasma contents by endocytosis and subsequent transcytosis and exocytosis-this process is called transcellular permeability. The permeability of blood vessels is highly variable as a result of intrinsic and extrinsic factors. It is significantly elevated upon tissue inflammations as a result of disabled IEJs and increased paracellular permeability due to inflammatory mediators. An increase in transcellular permeability during inflammation has also been postulated. Here, we provide an overview of the general properties of vascular permeability based on our recent observations of murine skin inflammation models, and we discuss its physiological significance in peripheral homeostasis.

Keywords: Blood vessel; Immunoglobulin; Inflammation; Interendothelial junctions; Paracellular; Permeability; Skin; Transcellular.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
The molecular weights of representative plasma molecules. β-2MG beta-2 microglobulin, IFN-γ interferon-γ, TNF-α tumor necrosis-α (Modification from a figure in [14]). The background colors discriminate plasma molecules that may (gray) or may not (blue) extravasate via paracellular pathway of the cutaneous blood vessels
Fig. 2
Fig. 2
Integrity of blood vessels in the skin. N nucleus, AJs adherens junction, TJs tight junction, VVO vesiculo-vacuolar organelle, LDL low-density lipoprotein

Similar articles

Cited by

References

    1. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367. doi: 10.1152/physrev.00012.2005. - DOI - PubMed
    1. Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14. doi: 10.1186/2040-2384-2-14. - DOI - PMC - PubMed
    1. Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C. Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol. 2001;136:239–255. doi: 10.1006/jsbi.2002.4441. - DOI - PubMed
    1. Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol. 2010;72:463–493. doi: 10.1146/annurev-physiol-021909-135833. - DOI - PubMed
    1. Qiao RL, Wang HS, Yan W, Odekon LE, Del Vecchio PJ, Smith TJ, et al. Extracellular matrix hyaluronan is a determinant of the endothelial barrier. Am J Physiol. 1995;269:C103–109. - PubMed