Inferring genetic interactions from comparative fitness data
- PMID: 29260711
- PMCID: PMC5737811
- DOI: 10.7554/eLife.28629
Inferring genetic interactions from comparative fitness data
Abstract
Darwinian fitness is a central concept in evolutionary biology. In practice, however, it is hardly possible to measure fitness for all genotypes in a natural population. Here, we present quantitative tools to make inferences about epistatic gene interactions when the fitness landscape is only incompletely determined due to imprecise measurements or missing observations. We demonstrate that genetic interactions can often be inferred from fitness rank orders, where all genotypes are ordered according to fitness, and even from partial fitness orders. We provide a complete characterization of rank orders that imply higher order epistasis. Our theory applies to all common types of gene interactions and facilitates comprehensive investigations of diverse genetic interactions. We analyzed various genetic systems comprising HIV-1, the malaria-causing parasite Plasmodium vivax, the fungus Aspergillus niger, and the TEM-family of β-lactamase associated with antibiotic resistance. For all systems, our approach revealed higher order interactions among mutations.
Keywords: computational biology; epistasis; fitness graph; fitness landscape; gene interactions; none; partial order; rank order; systems biology.
Conflict of interest statement
No competing interests declared.
Figures










Similar articles
-
The geometry of partial fitness orders and an efficient method for detecting genetic interactions.J Math Biol. 2018 Oct;77(4):951-970. doi: 10.1007/s00285-018-1237-7. Epub 2018 May 7. J Math Biol. 2018. PMID: 29736875 Free PMC article.
-
Rank orders and signed interactions in evolutionary biology.Elife. 2020 Jan 14;9:e51004. doi: 10.7554/eLife.51004. Elife. 2020. PMID: 31934856 Free PMC article.
-
Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.Mol Biol Evol. 2013 Aug;30(8):1779-87. doi: 10.1093/molbev/mst096. Epub 2013 May 15. Mol Biol Evol. 2013. PMID: 23676768 Free PMC article.
-
Revealing evolutionary pathways by fitness landscape reconstruction.Crit Rev Biochem Mol Biol. 2009 Jul-Aug;44(4):169-74. doi: 10.1080/10409230903039658. Crit Rev Biochem Mol Biol. 2009. PMID: 19552615 Review.
-
Evolution in the light of fitness landscape theory.Trends Ecol Evol. 2019 Jan;34(1):69-82. doi: 10.1016/j.tree.2018.10.009. Epub 2018 Dec 21. Trends Ecol Evol. 2019. PMID: 30583805 Review.
Cited by
-
The geometry of partial fitness orders and an efficient method for detecting genetic interactions.J Math Biol. 2018 Oct;77(4):951-970. doi: 10.1007/s00285-018-1237-7. Epub 2018 May 7. J Math Biol. 2018. PMID: 29736875 Free PMC article.
-
Functional network motifs defined through integration of protein-protein and genetic interactions.PeerJ. 2022 Feb 22;10:e13016. doi: 10.7717/peerj.13016. eCollection 2022. PeerJ. 2022. PMID: 35223214 Free PMC article.
-
Proteostasis Environment Shapes Higher-Order Epistasis Operating on Antibiotic Resistance.Genetics. 2019 Jun;212(2):565-575. doi: 10.1534/genetics.119.302138. Epub 2019 Apr 23. Genetics. 2019. PMID: 31015194 Free PMC article.
-
Resolving discrepancies between chimeric and multiplicative measures of higher-order epistasis.Nat Commun. 2025 Feb 17;16(1):1711. doi: 10.1038/s41467-025-56986-5. Nat Commun. 2025. PMID: 39962081 Free PMC article.
-
The Influence of Higher-Order Epistasis on Biological Fitness Landscape Topography.J Stat Phys. 2018;172(1):208-225. doi: 10.1007/s10955-018-1975-3. Epub 2018 Feb 7. J Stat Phys. 2018. PMID: 29904213 Free PMC article.
References
-
- Beerenwinkel N, Pachter L, Sturmfels B. Epistasis and shapes of fitness landscapes. Statistica Sinica. 2007;17:1317–1342.
-
- Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C. The genetic landscape of a cell. Science. 2010;327:425–431. doi: 10.1126/science.1180823. - DOI - PMC - PubMed
-
- Coxeter HSM. Regular polytopes. Courier Corporation 1973
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources