Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 14;18(2):785-792.
doi: 10.1021/acs.nanolett.7b03995. Epub 2018 Jan 4.

Charge Separation in Donor-C60 Complexes with Real-Time Green Functions: The Importance of Nonlocal Correlations

Affiliations

Charge Separation in Donor-C60 Complexes with Real-Time Green Functions: The Importance of Nonlocal Correlations

Emil Viñas Boström et al. Nano Lett. .

Abstract

We use the nonequilibrium Green function (NEGF) method to perform real-time simulations of the ultrafast electron dynamics of photoexcited donor-C60 complexes modeled by a Pariser-Parr-Pople Hamiltonian. The NEGF results are compared to mean-field Hartree-Fock (HF) calculations to disentangle the role of correlations. Initial benchmarking against numerically highly accurate time-dependent density matrix renormalization group calculations verifies the accuracy of NEGF. We then find that charge-transfer (CT) excitons partially decay into charge separated (CS) states if dynamical nonlocal correlation corrections are included. This CS process occurs in ∼10 fs after photoexcitation. In contrast, the probability of exciton recombination is almost 100% in HF simulations. These results are largely unaffected by nuclear vibrations; the latter become however essential whenever level misalignment hinders the CT process. The robust nature of our findings indicates that ultrafast CS driven by correlation-induced decoherence may occur in many organic nanoscale systems, but it will only be correctly predicted by theoretical treatments that include time-nonlocal correlations.

Keywords: Charge transfer; donor−acceptor complex; nonequilibrium Green functions; real-time simulations; ultrafast dynamics.

PubMed Disclaimer

Publication types

LinkOut - more resources