Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 21;7(1):18022.
doi: 10.1038/s41598-017-18364-0.

Nanopore DNA Sequencing and Genome Assembly on the International Space Station

Affiliations

Nanopore DNA Sequencing and Genome Assembly on the International Space Station

Sarah L Castro-Wallace et al. Sci Rep. .

Abstract

We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.

PubMed Disclaimer

Conflict of interest statement

Three authors (D.J.T., S.J. and F.I.) are employees of Oxford Nanopore Technologies, the company that produces the MinION sequencing technology. They assisted with experiment planning and instrument testing for flight. Analyses of nanopore data were performed independently by the bi-coastal team of the Chiu and Mason labs and the scientists at Oxford Nanopore Technologies. C.Y.C. is the director of the UCSF-Abbott Viral Diagnostics and Discovery Center and receives research support from Abbott Laboratories, Inc. All other authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Study design and flight/ground nanopore performance. (A) A mixture of equimolar DNA from mouse, E. coli and lambda phage genomes was sequenced in parallel on Earth (“Ground”) and in-flight on the ISS (after being delivered by a SpaceX Dragon capsule; flow cells were shipped to the Kennedy Space Center on July 11, 2016). Synchronous nanopore sequencing runs were performed from August 26, 2016 to January 9, 2017. (B) Plot of mean current intensity in picoAmperes (pA; Y-axis) against k-mers (x-axis) in order of increasing mean current based on a model distribution from Oxford Nanopore Technologies (black). Current distributions are tightly clustered with the exception of lower-quality ground #2. (C) Comparison of pairwise identities of aligned reads between ISS runs 1–4 and ground runs 1–4. (D) Pie charts of the read distributions corresponding to each ISS run and pooled ISS runs 1–4.
Figure 2
Figure 2
Automated metagenomic analysis of ISS nanopore data. (A) Flow chart of the SURPIrti bioinformatics pipeline for real-time microbial detection from nanopore data. (B) Donut charts of read distributions corresponding to all reads (left), bacteria (middle), and viruses (right) from pooled ISS runs 1 through 8. (C) Stacked column plot of reads each from ISS runs 1 through 8 showing distribution of identified organisms. (D) Stacked: bar plot of reads from pooled ISS runs 1 through 8 comparing metagenomic detection using SURPIrt versus directed alignment using GraphMap for organism identification from nanopore sequencing data.). (E) Coverage (green) and pairwise identity plots (purple) of raw nanopore reads mapped to the E. coli (upper panel), the mouse mitochondrial (lower left panel), and lambda genomes (lower left panel). Reads are mapped to the most closely matched reference genome identified by SURPIrt. Images not generated by the authors were obtained from the CDC Public Health Images Library: human silhouette, image ID 15798, illustrator D. Higgins; giardia, image ID 3394, source A. da Silva and M. Moser; yeast, image ID 300, no attribution possible; virus, image ID 21351, illustrator, A. Eckert; bacteria, image ID 21915, A. Eckert and J. Oosthuizen.

References

    1. Taylor GR, Konstantinova I, Sonnenfeld G, Jennings R. Changes in the immune system during and after spaceflight. Adv Space Biol Med. 1997;6:1–32. doi: 10.1016/S1569-2574(08)60076-3. - DOI - PubMed
    1. Wilson JW, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA. 2007;104:16299–16304. doi: 10.1073/pnas.0707155104. - DOI - PMC - PubMed
    1. Cho I, Blaser MJ. The Human Microbiome: at the interface of health and disease. Nature reviews. Genetics. 2012;13:260–270. - PMC - PubMed
    1. Kinross JM, von Roon AC, Holmes E, Darzi A, Nicholson JK. The human gut microbiome: implications for future health care. Current gastroenterology reports. 2008;10:396–403. doi: 10.1007/s11894-008-0075-y. - DOI - PubMed
    1. Johnson SS, Zaikova E, Goerlitz DS, Bai Y, Tighe SW. Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer. Journal of Biomolecular Techniques: JBT. 2017;28:2. - PMC - PubMed

Publication types