Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 22;17(1):438.
doi: 10.1186/s12884-017-1624-x.

"Hypothyroidism screening during first trimester of pregnancy"

Affiliations

"Hypothyroidism screening during first trimester of pregnancy"

María Castillo Lara et al. BMC Pregnancy Childbirth. .

Abstract

Background: Subclinical hypothyroidism is defined as an elevated thyroid-stimulating hormone level with a normal thyroxin level without signs or symptoms of hypothyroidism. Although it is well accepted that overt hypothyroidism has a deleterious impact on pregnancy, recent studies indicate that subclinical hypothyroidism may affect maternal and fetal health. Studies suggest an association between miscarriage and preterm delivery in euthyroid women positive for anti-peroxidase antibodies and/or anti-thyroglobulin antibodies. A proposal of a new set-point to diagnose SCH was recently published. The aim of this research was to determine the optimal thyroid-stimulating hormone cut-off point to screen for subclinical hypothyroidism in the first trimester of gestation in a population of our clinical area and to determine the diagnostic value of this screening test for detecting anti-thyroid peroxidase antibodies.

Methods: This cross-sectional study determines the cutoff point for SCH screening and evaluates its usefulness to detect TPO Ab using the Receiver Operating Characteristics (ROC) curve. Prevalence of SCH was calculated using as cut-off 2.5 mIU/L, 4 mIU/L, and our TSH 97.5th percentile. The ability to detect positive anti-thyroglobulin antibodies (TG Ab) and anti-thyroid peroxidase antibodies (TPO Ab) in patients with levels of TSH >97.5th percentile was determined by ROC curves.

Results: The mean, range and standard deviation of TSH was 2.15 ± 1.34 mIU/L (range 0.03-8.82); FT4 was 1.18 ± 0.13 ng/dL (range 0.94-1.3); TG Ab was 89.87 ± 413.56 IU/mL (range 0.10-4000); and TPO Ab was 21.61 ± 46.27 IU/mL(range 0.10-412.4). The ROC. analysis of the ability of the TSH level to predict the presence of positive TPO Ab found an AUC of 0.563.

Conclusion: In our population, the TSH cutoff value for gestational SCH screening is 4.7 mIU/L. Using the SEGO recommended 2.5 mIU/L TSH cut-off point, the prevalence of SCH is 37%. Applying the ATA 2017 recommended cutoff point of 4 mIU/L, the prevalence of SCH is 9.6%. Finally, when the cut-off of 4.7 mIU/L (our 97.5th centile) was used, the SCH prevalence is 5%. TSH levels in the first trimester of pregnancy are not useful to detect TPO Ab.

Keywords: Hypothyroidism; Maternal serum screening tests; Pregnancy complications, diagnosis; Pregnancy trimester, first; Thyroid function tests; Thyrotropin.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Research Ethics Committee of the University Hospital of Puerto Real, Bahia de Cádiz, La Janda, and Campo de Gibraltar. A written informed consent was obtained from all the participants in the study at enrolment.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Receiver Operating Characteristic curve for determining the optimal cut-off value of TSH for predicting the presence of TG antibodies
Fig. 2
Fig. 2
Receiver Operating Characteristic curve for determining the optimal cutoff value of TSH for predicting the presence of TPO antibodies

Similar articles

Cited by

References

    1. Negro R, Stagnaro-Green A. Diagnosis and management of subclinical hypothyroidism in pregnancy. BMJ. 2014;349:g4929. doi: 10.1136/bmj.g4929. - DOI - PubMed
    1. Maraka S, Ospina NM, O'Keeffe DT. Espinosa de Ycaza AE, Gionfriddo MR, Erwin PJ, Coddington CC 3rd, Stan MN, Murad MH, Montori VM. Subclinical hypothyroidism in pregnancy: a systematic review and meta-analysis. Thyroid. 2016;26:580–590. doi: 10.1089/thy.2015.0418. - DOI - PMC - PubMed
    1. Haddow JE, Palomaki GE, Allan WC, Williams JR, Knight GJ, Gagnon J, O’Heir CE, Mitchell ML, Hermos RJ, Waisbren SE, Faix JD, Klein RZ. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341:549–555. doi: 10.1056/NEJM199908193410801. - DOI - PubMed
    1. Fan X, Wu L. The impact of thyroid abnormalities during pregnancy on subsequent neuropsychological development of the offspring: a meta-analysis. J Matern Fetal Neonatal Med. 2016;29:3971–3976. doi: 10.3109/14767058.2016.1152248. - DOI - PubMed
    1. Stagnaro-Green A, Abalovich M, Alexander E, Azizi F, Mestman J, Negro R, Nixon A, Pearce EN, Soldin OP, Sullivan S. Wiersinga W; American Thyroid Association taskforce on thyroid disease during pregnancy and postpartum. Guidelines of the American Thyroid Association for the diagnosis and management of thyroid disease during pregnancy and postpartum. Thyroid. 2011;21:1081–1125. doi: 10.1089/thy.2011.0087. - DOI - PMC - PubMed

Publication types

MeSH terms