Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Dec 22;12(1):89.
doi: 10.1186/s13024-017-0231-7.

Practical considerations for choosing a mouse model of Alzheimer's disease

Affiliations
Review

Practical considerations for choosing a mouse model of Alzheimer's disease

Joanna L Jankowsky et al. Mol Neurodegener. .

Abstract

Alzheimer's disease (AD) is behaviorally identified by progressive memory impairment and pathologically characterized by the triad of β-amyloid plaques, neurofibrillary tangles, and neurodegeneration. Genetic mutations and risk factors have been identified that are either causal or modify the disease progression. These genetic and pathological features serve as basis for the creation and validation of mouse models of AD. Efforts made in the past quarter-century have produced over 100 genetically engineered mouse lines that recapitulate some aspects of AD clinicopathology. These models have been valuable resources for understanding genetic interactions that contribute to disease and cellular reactions that are engaged in response. Here we focus on mouse models that have been widely used stalwarts of the field or that are recently developed bellwethers of the future. Rather than providing a summary of each model, we endeavor to compare and contrast the genetic approaches employed and to discuss their respective advantages and limitations. We offer a critical account of the variables which may contribute to inconsistent findings and the factors that should be considered when choosing a model and interpreting the results. We hope to present an insightful review of current AD mouse models and to provide a practical guide for selecting models best matched to the experimental question at hand.

Keywords: APP; Amyloid precursor protein; ApoE; Apolipoprotein E; Aβ; Knock-in; Knockout; MAPT; TREM2; Tau; Transgenic mouse.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

NA

Consent for publication

NA

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Diagram of APP illustrating nine FAD mutations that have been incorporated into mouse models. The Aβ domain is highlighted in red, with the β- and γ-cleavage sites identified at residues 671 and 714, respectively, using the numbering convention for full-length 770 amino acid protein. The amino acid sequence of Aβ is outlined in red, with the positions of several commonly used FAD mutations and their amino acid substitutions shown (in bold) alongside the geographic name identifying each variant. Italic residues indicate the three sites at which the Aβ sequence diverges between human and mouse (human is shown). Swe, Swedish; Arc, Arctic; Aus, Austrian; Lon, London; Ind, Indiana; Ibe, Iberian; Flo, Florida

References

    1. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 1991;349:704–706. doi: 10.1038/349704a0. - DOI - PubMed
    1. Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995;373:523–527. doi: 10.1038/373523a0. - DOI - PubMed
    1. Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet. 1992;1:345–347. doi: 10.1038/ng0892-345. - DOI - PubMed
    1. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ. Mutation of the beta-amyloid precursor protein in familial Alzheimer's disease increases beta-protein production. Nature. 1992;360:672–674. doi: 10.1038/360672a0. - DOI - PubMed
    1. Murrell J, Farlow M, Ghett B, Benson MD. A mutation in the amyloid precursor protein associated with heridtary Alzheimer's disease. Science. 1991;254:97–99. doi: 10.1126/science.1925564. - DOI - PubMed

Publication types

Substances

Supplementary concepts