Electrical Stimulation of the Antagonist Muscle During Cycling Exercise Interval Training Improves Oxygen Uptake and Muscle Strength
- PMID: 29278576
- DOI: 10.1519/JSC.0000000000002393
Electrical Stimulation of the Antagonist Muscle During Cycling Exercise Interval Training Improves Oxygen Uptake and Muscle Strength
Abstract
Hashida, R, Takano, Y, Matsuse, H, Kudo, M, Bekki, M, Omoto, M, Nago, T, Kawaguchi, T, Torimura, T, and Shiba, N. Electrical stimulation of the antagonist muscle during cycling exercise interval training improves oxygen uptake and muscle strength. J Strength Cond Res 35(1): 111-117, 2021-A hybrid training system (HTS) is a resistance exercise method that combines voluntary concentric muscle contractions and electrically stimulated eccentric muscle contractions. We devised an exercise technique using HTS on cycle ergometer (HCE). The purpose of this study was to compare cardiorespiratory function and muscle strength when cycling exercise is combined with electrical stimulation over an extended period. Twenty-nine healthy young men were divided into an HCE group (n = 14) and a volitional cycle ergometer (VCE alone) group (n = 15). All subjects performed 30-minute cycling exercise interval training sessions 3 times a week for 6 weeks. The V̇o2peak of both groups significantly increased compared with the pretraining period (HCE group: from 31.3 ± 4.4 [ml·kg-1·min-1] pretraining to 37.6 ± 6.7 [ml·kg-1·min-1] post-training [p = 0.0024] and VCE group: from 34.0 ± 7.1 [ml·kg-1·min-1] pretraining to 38.4 ± 8.2 [ml·kg-1·min-1] [p = 0.0057]). After the training, there was no significant difference of changes in V̇o2peak between the HCE and the VCE groups (p = 0.7107). In the VCE group, the maximal isokinetic torque of knee extension (60°·s-1) post-training did not significantly increase compared with the pretraining period (VCE group: from 2.4 ± 0.5 [N·m·kg-1] pretraining to 2.5 ± 0.4 [N·m·kg-1] [p = 0.4543]). By contrast, in the HCE group, the maximal isokinetic torque of knee extension (60°·s-1) post-training significantly increased compared with pretraining period (HCE group: from 2.5 ± 0.3 [N·m·kg-1] pretraining to 2.8 ± 0.3 [N·m·kg-1] [p < 0.0001]). The change in knee extension torque was significantly greater for the HCE group than for the VCE group (p = 0.0307). In conclusion, cardiopulmonary function and knee extension strength were improved by the use of HCE.
Copyright © 2017 National Strength and Conditioning Association.
References
-
- Bouaziz W, Schmitt E, Kaltenbach G, Geny B, Vogel T. Health benefits of cycle ergometer training for older adults over 70: A review. Eur Rev Aging Phys Act 12: 8, 2015.
-
- Dirks ML, Wall BT, Kramer IF, Zorenc AH, Goessens JP, Gijsen AP, van Loon LJ. A single session of neuromuscular electrical stimulation does not augment postprandial muscle protein accretion. Am J Physiol Endocrinol Metab 311: E278–E285, 2016.
-
- Evans M, Guthrie N, Pezzullo J, Sanli T, Fielding RA, Bellamine A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: A randomized, double-blind placebo-controlled study. Nutr Metab (Lond) 14: 7, 2017.
-
- Glass NA, Torner JC, Frey Law LA, Wang K, Yang T, Nevitt MC, Felson DT, Lewis CE, Segal NA. The relationship between quadriceps muscle weakness and worsening of knee pain in the MOST cohort: A 5-year longitudinal study. Osteoarthritis Cartilage 21: 1154–1159, 2013.
-
- Gopalakrishnan R, Genc KO, Rice AJ, Lee SM, Evans HJ, Maender CC, Ilaslan H, Cavanagh PR. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med 81: 91–102, 2010.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
