Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 28;9(1):5.
doi: 10.3390/genes9010005.

Evolutionary Dynamics of the W Chromosome in Caenophidian Snakes

Affiliations

Evolutionary Dynamics of the W Chromosome in Caenophidian Snakes

Barbora Augstenová et al. Genes (Basel). .

Abstract

The caenophidian (assigned also as "advanced") snakes are traditionally viewed as a group of reptiles with a limited karyotypic variation and stable ZZ/ZW sex chromosomes. The W chromosomes of the caenophidian snakes are heterochromatic, and pioneering studies demonstrated that they are rich in repetitive elements. However, a comparative study of the evolutionary dynamics of the repetitive content of the W chromosome across the whole lineage is missing. Using molecular-cytogenetic techniques, we explored the distribution of four repetitive motifs (microsatellites GATA, GACA, AG and telomeric-like sequences), which are frequently accumulated in differentiated sex chromosomes in vertebrates, in the genomes of 13 species of the caenophidian snakes covering a wide phylogenetic spectrum of the lineage. The results demonstrate a striking variability in the morphology and the repetitive content of the W chromosomes even between closely-related species, which is in contrast to the homology and long-term stability of the gene content of the caenophidian Z chromosome. We uncovered that the tested microsatellite motifs are accumulated on the degenerated, heterochromatic W chromosomes in all tested species of the caenophidian snakes with the exception of the Javan file snake representing a basal clade. On the other hand, the presence of the accumulation of the telomeric-like sequences on the caenophidian W chromosome is evolutionary much less stable. Moreover, we demonstrated that large accumulations of telomeric-like motifs on the W chromosome contribute to sexual differences in the number of copies of the telomeric and telomeric-like repeats estimated by quantitative PCR, which might be confusing and incorrectly interpreted as sexual differences in telomere length.

Keywords: FISH; GATA; heterochromatin; microsatellites; sex chromosomes; telomeres.

PubMed Disclaimer

Conflict of interest statement

The authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Comparative phylogenetic reconstruction of the heterochromatic content of the W chromosomes in Caenophidia. The phylogenetic tree of studied snakes was completed according to phylogenies by [2]. We compared the morphology of W chromosomes (Giemsa stain), the pattern of heterochromatin accumulation (C-banding) and the topology of four microsatellite repeats: (TTAGGG)n, (GATA)n, (GACA)n and (AG)n (FISH). The chromosomes from C-banding and FISH experiments were counterstained by 4′,6-diamidino-2-phenylindole (DAPI). Photos of C-banding were inverted. In the case of FISH experiments, the chromosomes with DAPI were stained blue, and the fluorescence signal of probes was pseudo-colorized in red. Dashes represent missing data. Interstitial telomeric repeats (ITRs) on W chromosomes are indicated by arrows when they are not easily visible. For data collected from the bibliography, see the references inside the figure.
Figure 2
Figure 2
Female-to-male ratios of the number of telomeric-like motifs.

References

    1. Uetz P., Freed P., Hošek J., editors. The Reptile Database. [(accessed on 6 August 2017)]; Available online: http://www.reptile-database.org.
    1. Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. - DOI - PubMed
    1. Pyron R.A., Burbrink F.T. Extinction, ecological opportunity, and the origins of global snake diversity. Evolution. 2012;66:163–178. doi: 10.1111/j.1558-5646.2011.01437.x. - DOI - PubMed
    1. Rovatsos M., Vukić J., Lymberakis P., Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc. R. Soc. B Biol. Sci. 2015;282:20151992. doi: 10.1098/rspb.2015.1992. - DOI - PMC - PubMed
    1. Olmo E., Signorino G.G. Chromorep: A Reptile Chromosomes Database. [(accessed on 26 August 2017)];2005 Available online: http://chromorep.univpm.it.

LinkOut - more resources