Interplay of structure, elasticity, and dynamics in actin-based nematic materials
- PMID: 29284753
- PMCID: PMC5777046
- DOI: 10.1073/pnas.1713832115
Interplay of structure, elasticity, and dynamics in actin-based nematic materials
Abstract
Achieving control and tunability of lyotropic materials has been a long-standing goal of liquid crystal research. Here we show that the elasticity of a liquid crystal system consisting of a dense suspension of semiflexible biopolymers can be manipulated over a relatively wide range of elastic moduli. Specifically, thin films of actin filaments are assembled at an oil-water interface. At sufficiently high concentrations, one observes the formation of a nematic phase riddled with [Formula: see text] topological defects, characteristic of a two-dimensional nematic system. As the average filament length increases, the defect morphology transitions from a U shape into a V shape, indicating the relative increase of the material's bend over splay modulus. Furthermore, through the sparse addition of rigid microtubule filaments, one can gain additional control over the liquid crystal's elasticity. We show how the material's bend constant can be raised linearly as a function of microtubule filament density, and present a simple means to extract absolute values of the elastic moduli from purely optical observations. Finally, we demonstrate that it is possible to predict not only the static structure of the material, including its topological defects, but also the evolution of the system into dynamically arrested states. Despite the nonequilibrium nature of the system, our continuum model, which couples structure and hydrodynamics, is able to capture the annihilation and movement of defects over long time scales. Thus, we have experimentally realized a lyotropic liquid crystal system that can be truly engineered, with tunable mechanical properties, and a theoretical framework to capture its structure, mechanics, and dynamics.
Keywords: actin; elasticity; lyotropic liquid crystal; microtubule; topological defects.
Conflict of interest statement
The authors declare no conflict of interest.
Figures







References
-
- Chen RH. Liquid Crystal Displays: Fundamental Physics and Technology. Wiley; New York: 2011.
-
- Warner M, Terentjev EM. Liquid Crystal Elastomers. Vol 120 Oxford Univ Press; Oxford: 2003.
-
- Camacho-Lopez M, Finkelmann H, Palffy-Muhoray P, Shelley M. Fast liquid-crystal elastomer swims into the dark. Nat Mater. 2004;3:307–310. - PubMed
-
- Muševič I, Škarabot M, Tkalec U, Ravnik M, Žumer S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science. 2006;313:954–958. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials