Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Oct 31;8(62):106132-106142.
doi: 10.18632/oncotarget.22190. eCollection 2017 Dec 1.

Immune system and melanoma biology: a balance between immunosurveillance and immune escape

Affiliations
Review

Immune system and melanoma biology: a balance between immunosurveillance and immune escape

Anna Passarelli et al. Oncotarget. .

Abstract

Melanoma is one of the most immunogenic tumors and its relationship with host immune system is currently under investigation. Many immunomodulatory mechanisms, favoring melanomagenesis and progression, have been described to interfere with the disablement of melanoma recognition and attack by immune cells resulting in immune resistance and immunosuppression. This knowledge produced therapeutic advantages, such as immunotherapy, aiming to overcome the immune evasion. Here, we review the current advances in cancer immunoediting and focus on melanoma immunology, which involves a dynamic interplay between melanoma and immune system, as well as on effects of "targeted therapies" on tumor microenvironment for combination strategies.

Keywords: immune escape; immune system; immunoediting; immunogenicity; melanoma.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors report no conflicts of interest.

Figures

Figure 1
Figure 1. CTLA4 and PD1 regulate different stages of T-cell response
(A) T cell activation requires two complementary signals. The interaction between TCR and peptide-MHC complex must be associated by a second co-stimulatory signal mediated by CD28. Conversely the binding of CTLA4 to B7-1/2 (CD80/86) provides a control signal that suppresses ongoing T-cell activation. (B) PD1 is upregulated on T cells after persistent antigen exposure. When PD1 binds its ligand as PDL1 and PDL2 expressed by tumor cells, the T cell receives on inhibitory signal. Antibodies direct to CTLA4 or PD1/PDL1 can activate T cells by preventing their functional disablement. Abbreviations: DC, dendritic cell; CTLA4, cytotoxic T lymphocyte antigen 4; PD1, programmed death 1; TCR, T-cell receptor; MHC, major histocompatibility complex; PD-L1, programmed death ligand 1; PD-L2, programmed death-ligand 2.
Figure 2
Figure 2. Targeted therapy affects the tumor microenvironment in favour of immune re-activation
Left: Melanoma progression includes many pathogenetic and molecular events which contribute to the ineffective anti-tumor immunity. Melanoma microenvironment is enriched of immune-suppressive cytokines (e.g., IL-10, IL-6; TGF-β and VEGF) that drive the infiltration of immunosuppressive cells (e.g. Treg and MDSC), while impair the antigen processing machinery by DCs and the anti-tumor effect by T-cells and NK cells. Right: BRAF/MEK inhibitors exert direct anti-melanoma activity and restore the tumor immunogenicity within the microenvironment. Particularly, the targeted therapy induces the production of melanoma specific neo-antigens and hampers the immunosuppressive signals, thus restoring antigen presentation by DCs and T-cell mediated cytotoxicity. As a consequence, T-cells and NK cells increase nearby tumor, while Tregs and MDSC are strongly impaired. In addition, BRAF inhibitors may also condition tumor microenvironment in support of immunotherapy by inducing the expression of effector cell exhaustion molecules (e.g. PD-1 and TIM-3) on immune cells or PD-L1 on tumor cells.

References

    1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2014(136):e359–86. - PubMed
    1. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Bröcker EB, LeBoit PE, Pinkel D, Bastian BC. Distinct sets of genetic alterations in melanoma. NEJM. 2005;353:2135–47. - PubMed
    1. Palmieri G, Ombra MN, Colombino M, Casula M, Sini MC, Manca A, Paliogiannis P, Ascierto PA, Cossu A. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets. Front Oncol. 2015;5:183. - PMC - PubMed
    1. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immun. 2002;3:991–8. - PubMed
    1. Bhatia A, Kumar Y. Cancer-immune equilibrium: questions unanswered. Cancer Microenviron. 2011;4:209–217. - PMC - PubMed