Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr 15:245:551-556.
doi: 10.1016/j.foodchem.2017.10.106. Epub 2017 Oct 20.

Hydroxycinnamic acids loaded in lipid-core nanocapsules

Affiliations

Hydroxycinnamic acids loaded in lipid-core nanocapsules

Giuseppe Granata et al. Food Chem. .

Abstract

Ferulic, caffeic, sinapic, and coumaric acids, belonging to the class of hydroxycinnamic acids (HAs), are bioactive polyphenols widespread in the plant kingdom and present in the human diet. Due to their biological properties and effects in the prevention of various diseases associated with oxidative stress, HAs can be exploited for attractive nutraceutical applications. Starting from this and in order to increase bioaccessibility, we encapsulated HAs in lipid-core nanocapsules (NCs) based on a biodegradable and biocompatible poly(ε-caprolactone) polymer. The results showed that nanoparticles loaded with hydroxycinnamic acids (HA-NCs) have diameter of 224-253 nm, encapsulation efficiency of 53-78%, and are stable over time (30 days). In vitro tests evidenced that NCs are able to preserve HAs in the gastric simulated fluid and release them in the intestinal simulated fluid. The delivery system developed could be employed to create novel functional foods.

Keywords: Bioactive polyphenols; Hydroxycinnamic acids; Lipid-core nanocapsules; Nutraceuticals; Poly(ε-caprolactone).

PubMed Disclaimer

LinkOut - more resources