Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 13:1000:248-255.
doi: 10.1016/j.aca.2017.11.063. Epub 2017 Nov 30.

Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating

Affiliations

Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating

Martin Villegas et al. Anal Chim Acta. .

Abstract

The advent of 3D printing has allowed for rapid bench-top fabrication of molds for casting polydimethylsiloxane (PDMS) chips, a widely-used polymer in prototyping microfluidic devices. While fabricating PDMS devices from 3D printed molds is fast and cost-effective, creating smooth surface topology is highly dependent on the printer's quality. To produce smooth PDMS channels from these molds, we propose a novel technique in which a lubricant is tethered to the surface of a 3D printed mold, which results in a smooth interface for casting PDMS. Fabricating the omniphobic-lubricant-infused molds (OLIMs) was accomplished by coating the mold with a fluorinated-silane to produce a high affinity for the lubricant, which tethers it to the mold. PDMS devices cast onto OLIMs produced significantly smoother topology and can be further utilized to fabricate smooth-channeled PDMS devices. Using this method, we reduced the surface roughness of PDMS microfluidic channels from 2 to 0.2 μm (10-fold decrease), as well as demonstrated proper operation of the fabricated devices with superior optical properties compared to the rough devices. Furthermore, a COMSOL simulation was performed to investigate how the distinct surface topographies compare regarding their volumetric velocity profile and the shear rate produced. Simulation results showed that, near the channel's surface, variations in flow regime and shear stress is significantly reduced for the microfluidic channels cast on OLIM compared to the ones cast on uncoated 3D printed molds. The proposed fabrication method produces high surface-quality microfluidic devices, comparable to the ones cast on photolithographically fabricated molds while eliminating its costly and time-consuming fabrication process.

Keywords: 3D printed molds; MEMS; Omniphobic lubricant-infused surfaces; Smooth microfluidic channels.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources