Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jun;14(4):240-246.
doi: 10.1016/j.nephro.2017.10.003. Epub 2017 Dec 27.

[Dietary acid load: A novel target for the nephrologist?]

[Article in French]
Affiliations
Review

[Dietary acid load: A novel target for the nephrologist?]

[Article in French]
Philippe Chauveau et al. Nephrol Ther. 2018 Jun.

Abstract

The acid production of endogenous origin depends mainly on the metabolism of the food and varies with the nature of these. Of the order of 1mEq/kg/day for contemporary food in industrialized countries, it is reduced by more than one third among vegetarians and close to neutrality among vegans. The dietary acid load is eliminated by the normal kidneys, thus maintaining the acid-base equilibrium. In the setting of CKD, it will overflow the capacities of the nephrons, generating a retention of H+ ions, promoting subclinical acidosis. This tissue retention of H+ ions was confirmed by direct techniques in animal models and indirect techniques in humans. The systemic retention of H+ ions and the accompanying compensatory mechanisms have negative consequences on bone tissue, skeletal muscle, cardiovascular risk and renal function. In the animal, the substitution of casein (acid) by soy (alkaline) prevents metabolic acidosis and slows the progression of renal insufficiency. In man, various prospective studies have confirmed that the risk of renal insufficiency was positively correlated with the dietary acid load. Conversely, bicarbonate supplementation and/or a diet enriched with fruits and vegetables, have a favorable effect on renal insufficiency, including in subjects with normal bicarbonate. These results lead to reconsider the K/DOQI recommendations to correct acidosis when the bicarbonate level falls below 22mEq/L, since tissue retention of H+ ions and its negative consequences appear at higher or even normal levels of bicarbonates.

Keywords: Acid load; Acidose; Acidosis; Charge acide; Chronic kidney disease; Insuffisance rénale chronique.

PubMed Disclaimer

LinkOut - more resources