Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 23;12(1):651-661.
doi: 10.1021/acsnano.7b07746. Epub 2018 Jan 5.

Nanozyme Decorated Metal-Organic Frameworks for Enhanced Photodynamic Therapy

Affiliations

Nanozyme Decorated Metal-Organic Frameworks for Enhanced Photodynamic Therapy

Yan Zhang et al. ACS Nano. .

Abstract

Metal-organic frameworks (MOFs) have been used for photodynamic therapy (PDT) of cancers by integrating photosensitizers, which cause cytotoxic effects on cancer cells by converting tumor oxygen into reactive singlet oxygen (1O2). However, the PDT efficiency of MOFs is severely limited by tumor hypoxia. Herein, by decorating platinum nanozymes on photosensitizer integrated MOFs, we report a simple yet versatile strategy for enhanced PDT. The platinum nanoparticles homogeneously immobilized on MOFs possess high stability and catalase-like activity. Thus, our nanoplatform can facilitate the formation of 1O2 in hypoxic tumor site via H2O2-activated evolvement of O2, which can cause more serious damage to cancer cells. Our finding highlights that the composites of nanozymes and MOFs have the potential to serve as efficient agents for cancer therapy, which will open an avenue of nanozymes and MOFs toward biological applications.

Keywords: hypoxia; metal−organic frameworks; nanozymes; photodynamic therapy; singlet oxygen.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources