Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2018 Mar 15:255:22-28.
doi: 10.1016/j.ijcard.2017.12.053. Epub 2017 Dec 28.

In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris - DREAMS 2G) in de novo coronary lesions: Insights from the BIOSOLVE-II First-In-Man Trial

Affiliations
Clinical Trial

In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris - DREAMS 2G) in de novo coronary lesions: Insights from the BIOSOLVE-II First-In-Man Trial

Hector M Garcia-Garcia et al. Int J Cardiol. .

Abstract

Rationale: Bioresorbable scaffolds may confer clinical benefit in long-term studies; early mechanistic studies using intravascular imaging have provided insightful information about the immediate and mid-term local serial effects of BRS on the coronary vessel wall.

Objectives: We assessed baseline, 6- and 12-month imaging data of the drug-eluting absorbable metal scaffold (DREAMS 2G).

Methods and results: The international, first-in-man BIOSOLVE-II trial enrolled 123 patients with up to 2 de novo lesions (in vessels of 2.2 to 3.7mm). Angiographic based vasomotion, curvature and angulation were assessed; intravascular ultrasound (IVUS) derived radiofrequency (RF) data analysis and echogenicity were evaluated; optical coherence tomography (OCT) attenuation and backscattering analysis were also performed. There was hardly any difference in curvature between pre-procedure and 12months (-0.0019; p=0.48). The change in angulation from pre- to 12months was negligible (-3.58°; 95% CI [-5.97, -1.20]), but statistically significant. At 6months, the change in QCA based minimum lumen diameter in response to high dose of acetylcholine and IVUS-RF necrotic core percentage showed an inverse relationship (estimate of -0.489; p=0.055) and with fibrous volume a positive relationship (estimate of 0.53, p=0.035). Bioresorption analysis by OCT showed that the maximum attenuation values decreased significantly from post-procedure at 6months (Δ 6months vs. post-proc. is -13.5 [95% CI -14.6, -12.4]) and at 12months (Δ 12months vs. post-proc. is -14.0 [95% CI -15.4, -12.6]). By radiofrequency data, the percentage of dense calcium decreased significantly from post-procedure at 6months and at 12months. Likewise, by echogenicity, hyperechogenic structures decreased significantly from post-procedure at 6months; thereafter, they remained unchanged.

Conclusion: Following implantation of DREAMS 2G, restoration of the vessel geometry, vasomotion and bioresorption signs were observed at up to 12months; importantly, these changes occurred with preservation of the lumen size between 6 and 12months. NCT01960504.

Keywords: Bioresorbable scaffold; Coronary artery disease; DREAMS 2G; Magnesium scaffold; Metal scaffold; Sirolimus.

PubMed Disclaimer

Associated data

LinkOut - more resources