Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Dec 28;21(Suppl 3):308.
doi: 10.1186/s13054-017-1907-7.

Personalized physiological medicine

Affiliations
Review

Personalized physiological medicine

Can Ince. Crit Care. .

Abstract

This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable to this paper.

Consent for publication

Not applicable to this paper.

Competing interests

CI has received honoraria and independent research grants from Fresenius-Kabi (Bad Homburg, Germany), Baxter Health Care (Deerfield, Illinois), and AM-Pharma (Bunnik, The Netherlands). He has developed SDF imaging and is listed as the inventor on related patents commercialized by MicroVision Medical (MVM) under a license from the Academic Medical Center (AMC). He has been a consultant for MVM in the past, but has not been involved with this company for more than 5 years and holds no shares in this company. Braedius Medical, a company owned by a relative of CI, has developed and designed a hand-held microscope called CytoCam-IDF imaging. CI has no financial relation with Braedius Medical of any sort, i.e., never owned shares, or received consultancy or speaker fees from Braedius Medical. CI hosts an internet site (https://microcirculationacademy.org) which offers services (e.g., training, courses, and analysis) related to clinical microcirculation.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The four pillars of personalized physiological medicine. Pillar I is measurement of the fitness and frailty of the patient and their physiological reserve and fitness to deal with the physiological stress of critical illness. Pillar II concerns measurement of the function of organ systems and their response to therapy as well as their functional capacity and reserve including the immunological, humoral and coagulatory systems. Pillar III concerns the measurement of the hemodynamic coherence between the macro- and microcirculation and parenchymal cells in response to resuscitation. The loss of hemodynamic coherence can be identified by observation of the microcirculation, where type 1 concerns inflammation and infection-induced heterogeneous obstructions of microcirculatory flow, type 2 concerns hemodilution-induced loss of red blood cell filled capillaries, type 3 concerns microcirculatory stasis induced by excessive vasopressor load or raised venous pressures, and type 4 concerns tissue edema (red cells are well oxygenated and blue cells are hypoxic cells; taken from [35] with permission). Pillar IV is the integration and feedback of the various elements of the personalized physiological medicine modules to provide input in an integrative and time variant holistic manner to identify and assess the success of therapy and severity of organ and cellular dysfunction, as well as identifying the essential parameters in need of correction

References

    1. Marini JJ, Vincent JL, Annane D. Critical care evidence–new directions. JAMA. 2015;313(9):893–4. doi: 10.1001/jama.2014.18484. - DOI - PubMed
    1. Christaki E, Giamarellos-Bourboulis EJ. The beginning of personalized medicine in sepsis: small steps to a bright future. Clin Genet. 2014;86:56–61. doi: 10.1111/cge.12368. - DOI - PubMed
    1. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7. doi: 10.1038/nature03985. - DOI - PubMed
    1. Alge JL, Arthur JM. Biomarkers of AKI. A review of mechanistic relevance and potential therapeutic implications. Clin J Am Soc Nephrol. 2015;10:147–55. doi: 10.2215/CJN.12191213. - DOI - PMC - PubMed
    1. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15. doi: 10.1186/cc8872. - DOI - PMC - PubMed

LinkOut - more resources