Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jan 3;10(422):eaao0475.
doi: 10.1126/scitranslmed.aao0475.

Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials

Affiliations
Review

Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials

Marsha C Lampi et al. Sci Transl Med. .

Abstract

Tissues stiffen during aging and during the pathological progression of cancer, fibrosis, and cardiovascular disease. Extracellular matrix stiffness is emerging as a prominent mechanical cue that precedes disease and drives its progression by altering cellular behaviors. Targeting extracellular matrix mechanics, by preventing or reversing tissue stiffening or interrupting the cellular response, is a therapeutic approach with clinical potential. Major drivers of changes to the mechanical properties of the extracellular matrix include phenotypically converted myofibroblasts, transforming growth factor β (TGFβ), and matrix cross-linking. Potential pharmacological interventions to overcome extracellular matrix stiffening are emerging clinically. Aside from targeting stiffening directly, alternative approaches to mitigate the effects of increased matrix stiffness aim to identify and inhibit the downstream cellular response to matrix stiffness. Therapeutic interventions that target tissue stiffening are discussed in the context of their limitations, preclinical drug development efforts, and clinical trials.

PubMed Disclaimer

Publication types

Substances