Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Apr;70(4):649-53.
doi: 10.1097/00000542-198904000-00018.

The role of oxidative biotransformation of halothane in the guinea pig model of halothane-associated hepatotoxicity

Affiliations

The role of oxidative biotransformation of halothane in the guinea pig model of halothane-associated hepatotoxicity

R C Lind et al. Anesthesiology. 1989 Apr.

Abstract

The role of the oxidative pathway of halothane biotransformation in mediating the hepatotoxicity of halothane in the guinea pig was examined by utilizing the deuterated form of halothane (d-halothane), which is resistant to oxidative metabolism. Male outbred Hartley guinea pigs were exposed to either 1% v/v halothane or d-halothane, FIO2 = 0.21, for 4 h. Significant reductions in both oxidative and overall halothane biotransformation were observed with the use of d-halothane as indicated by decreased plasma levels of trifluoroacetic acid and bromide ion, respectively, immediately following exposure. Plasma fluoride ion, indicative of the reductive metabolism of halothane, was significantly increased with the use of d-halothane. These changes in metabolism were accompanied by a reduced hepatotoxic response as indicated by significantly decreased plasma ALT levels 24-96 h following exposure and a significantly lesser incidence of centrilobular necrosis. Thus, the oxidative biotransformation of halothane is implicated as a mechanism of injury in guinea pigs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources