GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization
- PMID: 29304863
- PMCID: PMC5756339
- DOI: 10.1186/s12931-017-0708-5
GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization
Abstract
Background: Influenza A viruses cause life-threatening pneumonia and lung injury in the lower respiratory tract. Application of high GM-CSF levels prior to infection has been shown to reduce morbidity and mortality from pathogenic influenza infection in mice, but the mechanisms of protection and treatment efficacy have not been established.
Methods: Mice were infected intranasally with influenza A virus (PR8 strain). Supra-physiologic levels of GM-CSF were induced in the airways using the double transgenic GM-CSF (DTGM) or littermate control mice starting on 3 days post-infection (dpi). Assessment of respiratory mechanical parameters was performed using the flexiVent rodent ventilator. RNA sequence analysis was performed on FACS-sorted airway macrophage subsets at 8 dpi.
Results: Supra-physiologic levels of GM-CSF conferred a survival benefit, arrested the deterioration of lung mechanics, and reduced the abundance of protein exudates in bronchoalveolar (BAL) fluid to near baseline levels. Transcriptome analysis, and subsequent validation ELISA assays, revealed that excess GM-CSF re-directs macrophages from an "M1-like" to a more "M2-like" activation state as revealed by alterations in the ratios of CXCL9 and CCL17 in BAL fluid, respectively. Ingenuity pathway analysis predicted that GM-CSF surplus during IAV infection elicits expression of anti-inflammatory mediators and moderates M1 macrophage pro-inflammatory signaling by Type II interferon (IFN-γ).
Conclusions: Our data indicate that application of high levels of GM-CSF in the lung after influenza A virus infection alters pathogenic "M1-like" macrophage inflammation. These results indicate a possible therapeutic strategy for respiratory virus-associated pneumonia and acute lung injury.
Keywords: Alveolar; Exudative; GM-CSF; Influenza; Interferon; Macrophage; Pneumonia; RNA-seq.
Conflict of interest statement
Ethics approval and consent to participate
All animal procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at Pennsylvania State University College of Medicine under protocols #43629 and 47,450, and were cared for as previously described [11]. The regulation of the use of mice in research falls under the Public Health Service Policy on Humane Care and Use of Laboratory Animals (PHS Policy), and is enforced by The Office of Laboratory Animal Welfare (OLAW) under Assurance number A3045-01. In order to comply with the PHS Policy, our institution adheres to the US Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research and Training and the Guide for the Care and Use of Laboratory Animals 8th Edition [72].
Consent for publication
Not applicable, the authors agree to pay the journal processing fee should the manuscript be accepted for publication.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figures






References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials