Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 5;4(1):2.
doi: 10.1186/s40798-017-0114-z.

A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

Affiliations

A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

Fatima Al-Khelaifi et al. Sports Med Open. .

Abstract

Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences.

Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models.

Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts.

Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.

Keywords: Elite athletes; Endurance; Energy substrates; Metabolomics; Oxidative stress; Power; Steroids biosynthesis.

PubMed Disclaimer

Conflict of interest statement

Authors’ information

CG and FB are directors of anti-doping labs in Qatar and Italy, respectively. ID, KS, and NY are the bioinformatics/biostatistics team. MAE is the lead PI.

Ethics approval and consent to participate

This study was performed in line with the World Medical Association Declaration of Helsinki. Only consented participants were included in the study. All protocols were approved by the Institutional Research Board of anti-doping lab Qatar (F2014000009).

Consent for publication

Not applicable

Competing interests

Fatima Al-Khelaifi, Ilhame Diboun, Francesco Donati, Francesco Botrè, Mohammed Alsayrafi, Costas Georgakopoulos, Karsten Suhre, Noha A. Yousri, and Mohamed A Elrayess declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
PCA analysis of athlete metabolomics data. a A score plot of PC1 and PC2 indicating clustering of samples into two groups according to PC1. Neither PCs is explained by sport type or class. b, c Loading plots offering clues on what the two PCs may represent: The heme/hemoglobin metabolites suggests a hemolysis signature for PC1 (b) while the TCA energy metabolite highlighted by PC2 indicates an energy generating process which may be associated with exercise (c)
Fig. 2
Fig. 2
OPLS-DA model comparing moderate- versus high-endurance classes of elite athletes. a A score plot showing the class-discriminatory component (x-axis) versus orthogonal component (y-axis). b The corresponding loading plot showing a clustering of steroids and monohydroxy-fatty acids at the high end of endurance opposed by a clustering of diacyl-glycerols and gamma-glutamyl amino acids at the negative end
Fig. 3
Fig. 3
OPLS-DA model of moderate- versus high-power classes of elite athletes. a A score plot showing the class-discriminatory component on the x-axis versus the first orthogonal component on the y-axis. b The corresponding loading plot showing a clustering of sterols, lipids, and xanthine metabolites at the high end of power as opposed to enrichment of gamma-glutamyl amino acids at the low end of power
Fig. 4
Fig. 4
A schematic diagram summarizing the biochemical relationships between steroid metabolites found significantly associated with high endurance (shaded boxes). This is based on the steroid hormone biosynthesis reference pathway (map00140) from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
Fig. 5
Fig. 5
Heatmap of metabolites significantly associated with high endurance from the linear model association analysis (y-axis). Samples on x-axis were ordered by sports type and group. The color code denotes z-scaled values of metabolites after correction of confounders
Fig. 6
Fig. 6
Heatmap of metabolites significantly associated with high power from the linear model association analysis (y-axis). Samples on x-axis were ordered by sports type and group. The color code denotes z-scaled values of metabolites after correction of confounders

References

    1. Lewis GD, Farrell L, Wood MJ, Martinovic M, Arany Z, Rowe GC, et al. Metabolic signatures of exercise in human plasma. Sci Transl Med. 2010;2(33):33ra7. doi: 10.1126/scitranslmed.3001006. - DOI - PMC - PubMed
    1. Pitsiladis YP, Maughan RJ. The effects of exercise and diet manipulation on the capacity to perform prolonged exercise in the heat and in the cold in trained humans. J Physiol. 1999;517(Pt 3):919–930. doi: 10.1111/j.1469-7793.1999.0919s.x. - DOI - PMC - PubMed
    1. Lac G, Maso F. Biological markers for the follow-up of athletes throughout the training season. Pathologie-biologie. 2004;52(1):43–49. doi: 10.1016/S0369-8114(03)00049-X. - DOI - PubMed
    1. Rietjens GJ, Kuipers H, Adam JJ, Saris WH, van Breda E, van Hamont D, et al. Physiological, biochemical and psychological markers of strenuous training-induced fatigue. Int J Sports Med. 2005;26(1):16–26. doi: 10.1055/s-2004-817914. - DOI - PubMed
    1. Yan B, A J, Wang G, Lu H, Huang X, Liu Y et al. Metabolomic investigation into variation of endogenous metabolites in professional athletes subject to strength-endurance training. J Appl Physiol 2009;106(2):531-538. doi:10.1152/japplphysiol.90816.2008. - PubMed

LinkOut - more resources