Gene mutations in stool from gastric and colorectal neoplasia patients by next-generation sequencing
- PMID: 29307989
- PMCID: PMC5743500
- DOI: 10.3748/wjg.v23.i47.8291
Gene mutations in stool from gastric and colorectal neoplasia patients by next-generation sequencing
Abstract
Aim: To study cancer hotspot mutations by next-generation sequencing (NGS) in stool DNA from patients with different gastrointestinal tract (GIT) neoplasms.
Methods: Stool samples were collected from 87 Finnish patients diagnosed with various gastric and colorectal neoplasms, including benign tumors, and from 14 healthy controls. DNA was isolated from stools by using the PSP® Spin Stool DNA Plus Kit. For each sample, 20 ng of DNA was used to construct sequencing libraries using the Ion AmpliSeq Cancer Hotspot Panel v2 or Ion AmpliSeq Colon and Lung Cancer panel v2. Sequencing was performed on Ion PGM. Torrent Suite Software v.5.2.2 was used for variant calling and data analysis.
Results: NGS was successful in assaying 72 GIT samples and 13 healthy controls, with success rates of the assay being 78% for stomach neoplasia and 87% for colorectal tumors. In stool specimens from patients with gastric neoplasia, five hotspot mutations were found in APC, CDKN2A and EGFR genes, in addition to seven novel mutations. From colorectal patients, 20 mutations were detected in AKT1, APC, ERBB2, FBXW7, KIT, KRAS, NRAS, SMARCB1, SMO, STK11 and TP53. Healthy controls did not exhibit any hotspot mutations, except for two novel ones. APC and TP53 were the most frequently mutated genes in colorectal neoplasms, with five mutations, followed by KRAS with two mutations. APC was the most commonly mutated gene in stools of patients with premalignant/benign GIT lesions.
Conclusion: Our results show that in addition to colorectal neoplasms, mutations can also be assayed from stool specimens of patients with gastric neoplasms.
Keywords: Colorectal neoplasia; Gastric neoplasia; Mutations; Next-generation sequencing; Stool DNA.
Conflict of interest statement
Conflict-of-interest statement: The authors declare no conflicts of interest.
References
-
- De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11:753–762. - PubMed
-
- Miranda C, Nucifora M, Molinari F, Conca E, Anania MC, Bordoni A, Saletti P, Mazzucchelli L, Pilotti S, Pierotti MA, et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2012;18:1769–1776. - PubMed
-
- Antonescu CR, Romeo S, Zhang L, Nafa K, Hornick JL, Nielsen GP, Mino-Kenudson M, Huang HY, Mosquera JM, Dei Tos PA, et al. Dedifferentiation in gastrointestinal stromal tumor to an anaplastic KIT-negative phenotype: a diagnostic pitfall: morphologic and molecular characterization of 8 cases occurring either de novo or after imatinib therapy. Am J Surg Pathol. 2013;37:385–392. - PMC - PubMed
-
- Joensuu H, Rutkowski P, Nishida T, Steigen SE, Brabec P, Plank L, Nilsson B, Braconi C, Bordoni A, Magnusson MK, et al. KIT and PDGFRA mutations and the risk of GI stromal tumor recurrence. J Clin Oncol. 2015;33:634–642. - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous
