Genetically Encoded Glutamate Indicators with Altered Color and Topology
- PMID: 29308878
- DOI: 10.1021/acschembio.7b01085
Genetically Encoded Glutamate Indicators with Altered Color and Topology
Abstract
Glutamate is one of the 20 common amino acids and of utmost importance for chemically mediated synaptic transmission in nervous systems. To expand the color palette of genetically encoded indicators for glutamate, we used protein engineering to develop a red intensity-based glutamate-sensing fluorescent reporter (R-iGluSnFR1). Manipulating the topology of R-iGluSnFR1, and a previously reported green fluorescent indicator, led to the development of noncircularly permutated (ncp) variants. R- and Rncp-iGluSnFR1 display glutamate affinities of 11 μM and 0.9 μM, respectively. We demonstrate that these glutamate indicators are functional when targeted to the surface of HEK-293 cells. Furthermore, we show that Gncp-iGluSnFR enabled reliable visualization of extrasynaptic glutamate in organotypic hippocampal slice cultures, while R-iGluSnFR can reliably resolve action potential-evoked glutamate transients by electrical field stimuli in cultures of dissociated hippocampal neurons.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous