Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 24;8(65):109151-109160.
doi: 10.18632/oncotarget.22642. eCollection 2017 Dec 12.

Targeting of CD122 enhances antitumor immunity by altering the tumor immune environment

Affiliations

Targeting of CD122 enhances antitumor immunity by altering the tumor immune environment

Daniel O Villarreal et al. Oncotarget. .

Abstract

Mounting evidence demonstrates that CD8+CD122+ T cells have suppressive properties with the capacity to inhibit T cell responses. Therefore, these cells are rational targets for cancer immunotherapy. Here, we demonstrate that CD122 monoclonal antibody (mAb; aCD122) therapy significantly suppressed tumor growth and improved long-term survival in tumor-bearing mice. This therapeutic effect correlated with enhanced polyfunctional, cytolytic intratumoral CD8+ T cells and a decrease in granulocytic myeloid-derived suppressor cells (G-MDSCs). In addition, aCD122 treatment synergized with a vaccine to augment vaccine-induced antigen (Ag)-specific CD8+ T cell responses, reject established tumors and generate memory T cells. Furthermore, aCD122 mAb synergized with an anti-GITR (aGITR) mAb to confer significant control of tumor growth. These results suggest CD122 might be a promising target for cancer immunotherapy, either as a single agent or in combination with other forms of immunotherapy.

Keywords: CD122; CD8 T cells; GITR; immunotherapy; vaccines.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST No potential conflicts of interest were disclosed by the authors.

Figures

Figure 1
Figure 1. Treatment with 5H4 mAb reduced CD8+CD122+ T cell population
Naïve B6 non-tumor bearing mice were injected i.p. with 100 ug of 5H4 anti-CD122 mAb or with the isotype (rat IgG2a) control. Three days after injection, splenocytes were analyzed for CD8+CD122+ T cells by flow cytometry. (A-B) Flow plot analysis and representative data showing the percentages of CD8+CD122+ T cells and the MFI of CD122 on CD8+CD122+ T cells in total splenic lymphocytes. Isotype indicates CD8+ splenocytes stained with the isotype control antibody for CD122 staining. Results are representative of 2 independent experiments. ****P<0.0001. Errors bars indicate SEM of n = 5/group.
Figure 2
Figure 2. CD122 mAb treatment suppressed CT26 and B16-OVA tumor growth and enhanced long-term survival
Treatment regimen, individual tumor growth, group tumor measurements, and survival of CT26 (A) and B16-OVA (B) implanted mice following treatment are indicated. Figures represent 2 (CT26) and 3 (B16-OVA) independent experiments. **P<0.01; ***P<0.001; ****P<0.0001.
Figure 3
Figure 3. CD122 mAb treatment altered the cellular composition of the tumor immune microenvironment in the B16-OVA melanoma model
TILs from tumors of B16-OVA mice were harvested 16 days after tumor implantation. (A) CD45+ leukocyte infiltrate and CD8+ and CD4+ TILs as percentage of total CD45+ cells are shown in treated versus untreated groups. TIL populations, including CD4+ Tregs (B) and M-MDSC (CD11b+Ly6C+Ly6G-) and G-MDSC (CD11b+Ly6C-Ly6G+) (C) were identified by flow cytometry. (D) CD122 expression by G-MDSC was shown by flow cytometry. M-MDSCs also expressed CD122 (data not shown). *P<0.05; **P<0.01; ns not significant. Error bars indicate SEM of n = 5/group.
Figure 4
Figure 4. CD122 mAb treatment of B16-OVA tumors increased the frequency and function of specific inflammatory cytokine production of tumor infiltrating T cells and efficacy is dependent on CD8+ T cells
(A) Summary data showing percentage of CD4+CD45+ TILs expressing IFNγ. (B-C) Representative and summary data showing single-, double- and triple positive CD8+ T cells releasing IFNγ, TNFα and/or co-expressing the degranulation marker, CD107a, following OVA257-264 and OVA323-339 peptide incubation with PMA/ION stimulation. (D) Tumor growth curves and survival over time for B16-OVA tumor-bearing mice treated aCD122 and with/without anti-CD4 or anti-CD8 mAbs. Experiments were repeated at least two times. *P<0.05; **P<0.01; ***P<0.001. Errors bars indicate SEM of n = 5/group (A-C); n= 10/group in (D).
Figure 5
Figure 5. Anti-CD122 mAb treatment synergizes with an aGITR mAb therapy
On day +4 post-implantation of B16-OVA, mice were treated with aCD122 or aGITR or the combination as indicated. Mean tumor growth and survival are depicted. Experiments were repeated at least two times. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. Errors bars indicate SEM; n = 10/group.
Figure 6
Figure 6. CD122 mAb synergized with a tumor vaccine to inhibit the growth of B16-OVA tumors
(A) On day +7 post-implantation, mice were treated with aCD122 mAb (administered 5 times at 2-3 day intervals) or with peptide vaccine (1 dose) or the combination as indicated. Mean tumor growth and survival are depicted (B). TILs were harvested at day +16, followed by analysis of percent of tumor infiltrating G-MDSCs, IFNγ/TNFα cytokine secreting CD8+ T cells upon ex-vivo stimulation with OVA257-264 peptide, OVA tetramer-specific CD8+ TILs, and Tregs. (C) On day +7 post-implantation, mice were treated with aCD122 in combination with peptide vaccine (3 doses) as indicated. Survival curve on the left shows primary treatment results; curve on the right shows rechallenged mice that rejected tumors after aCD122/vaccine treatment. Data are representative of 2-3 independent experiments. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. Error bars indicate SEM of n = 5/group for the bar graphs; n=10/group for the efficacy studies in B, and D.

References

    1. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96. - PMC - PubMed
    1. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M, Takahashi T. Immunologic tolerance maintained by CD25+Cd4+ regulaotry T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32. - PubMed
    1. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: Mechanisms of differentiation and function. Annu Rev immunol. 2012;30:531–564. - PMC - PubMed
    1. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends immunol. 2016;37:208–20. - PMC - PubMed
    1. Li S, Xie Q, Zeng Y, Zou C, Liu X, Wu S, Deng H, Xu Y, Li XC, Dai Z. A naturally occurring CD8+CD122+ T-cell subset as a memory-like Treg family. Cell Mol Immunol. 2014;11:326–31. - PMC - PubMed