Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non-Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation
- PMID: 29314482
- DOI: 10.1002/anie.201710567
Insights into the Desaturation of Cyclopeptin and its C3 Epimer Catalyzed by a non-Heme Iron Enzyme: Structural Characterization and Mechanism Elucidation
Abstract
AsqJ, an iron(II)- and 2-oxoglutarate-dependent enzyme found in viridicatin-type alkaloid biosynthetic pathways, catalyzes sequential desaturation and epoxidation to produce cyclopenins. Crystal structures of AsqJ bound to cyclopeptin and its C3 epimer are reported. Meanwhile, a detailed mechanistic study was carried out to decipher the desaturation mechanism. These findings suggest that a pathway involving hydrogen atom abstraction at the C10 position of the substrate by a short-lived FeIV -oxo species and the subsequent formation of a carbocation or a hydroxylated intermediate is preferred during AsqJ-catalyzed desaturation.
Keywords: C−C bond formation; carbocations; desaturation; enzyme mechanisms; viridicatin.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous
