Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Apr;27(4):1639-1651.
doi: 10.1109/TIP.2017.2781424.

Robust Object Co-Segmentation Using Background Prior

Robust Object Co-Segmentation Using Background Prior

Junwei Han et al. IEEE Trans Image Process. 2018 Apr.

Abstract

Given a set of images that contain objects from a common category, object co-segmentation aims at automatically discovering and segmenting such common objects from each image. During the past few years, object co-segmentation has received great attention in the computer vision community. However, the existing approaches are usually designed with misleading assumptions, unscalable priors, or subjective computational models, which do not have sufficient robustness for dealing with complex and unconstrained real-world image contents. This paper proposes a novel two-stage co-segmentation framework, mainly for addressing the robustness issue. In the proposed framework, we first introduce the concept of union background and use it to improve the robustness for suppressing the image backgrounds contained by the given image groups. Then, we also weaken the requirement for the strong prior knowledge by using the background prior instead. This can improve the robustness when scaling up for the unconstrained image contents. Based on the weak background prior, we propose a novel MR-SGS model, i.e., manifold ranking with the self-learned graph structure, which can infer suitable graph structures in a data-driven manner rather than building the fixed graph structure relying on the subjective design. Such capacity is critical for further improving the robustness in inferring the foreground/background probability of each image pixel. Comprehensive experiments and comparisons with other state-of-the-art approaches can demonstrate the effectiveness of the proposed work.

PubMed Disclaimer

LinkOut - more resources