Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 6;90(3):1861-1869.
doi: 10.1021/acs.analchem.7b03934. Epub 2018 Jan 25.

Simple Strategy for Rapid and Sensitive Detection of Avian Influenza A H7N9 Virus Based on Intensity-Modulated SPR Biosensor and New Generated Antibody

Affiliations

Simple Strategy for Rapid and Sensitive Detection of Avian Influenza A H7N9 Virus Based on Intensity-Modulated SPR Biosensor and New Generated Antibody

Ying-Feng Chang et al. Anal Chem. .

Abstract

In 2013 a new reassortant avian influenza A H7N9 virus emerged in China, causing human infection with high mortality. An accurate and timely diagnosis is crucial for controlling the outbreaks of the disease. We therefore propose a simple strategy for rapidly and sensitively detecting the H7N9 virus using an intensity-modulated surface plasmon resonance (IM-SPR) biosensor integrated with a new generated monoclonal antibody. The novel antibody exhibits significant specificity to recognize H7N9 virus compared with other clinical human influenza isolates (p < 0.01). Experimentally, the detection limit of the proposed approach for H7N9 virus detection is estimated to be 144 copies/mL, which is a 20-fold increase in sensitivity compared with homemade target-captured ELISA using the identical antibody. For the measurement of mimic clinical specimens containing the H7N9 virus mixed with nasal mucosa from flu-like syndrome patients, the detection limit is calculated to be 402 copies/mL, which is better than conventional influenza detection assays; quantitative reverse transcription polymerase chain reaction (qRT-PCR) and rapid influenza diagnostic test (RIDT). Most importantly, the assay time took less than 10 min. Combined, the results of this study indicate that the proposed simple strategy demonstrates high sensitivity and time-saving in H7N9 virus detection. By incorporating a high specific recognizer, the proposed technique has the potential to be used in applications and development of other emerging or re-emerging microbe detection platforms.

PubMed Disclaimer

Publication types

MeSH terms

Substances