Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Feb 16;83(4):1948-1958.
doi: 10.1021/acs.joc.7b02896. Epub 2018 Jan 26.

Pot-Economy Autooxidative Condensation of 2-Aryl-2-lithio-1,3-dithianes

Affiliations

Pot-Economy Autooxidative Condensation of 2-Aryl-2-lithio-1,3-dithianes

João R Vale et al. J Org Chem. .

Abstract

The autoxidative condensation of 2-aryl-2-lithio-1,3-dithianes is here reported. Treatment of 2-aryl-1,3-dithianes with n-BuLi in the absence of any electrophile leads to condensation of three molecules of 1,3-dithianes and formation of highly functionalized α-thioether ketones orthothioesters in 51-89% yields upon air exposure. The method was further expanded to benzaldehyde dithioacetals, affording corresponding orthothioesters and α-thioether ketones in 48-97% yields. The experimental results combined with density functional theory studies support a mechanism triggered by the autoxidation of 2-aryl-2-lithio-1,3-dithianes to yield a highly reactive thioester that undergoes condensation with two other molecules of 2-aryl-2-lithio-1,3-dithiane.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1
Scheme 2
Scheme 2
For reaction conditions see footnote a, Table 1. LDA as base.
Scheme 3
Scheme 3
For reaction conditions see footnote a, Table 1. Isolated yields. Unreacted dithiane 4 was isolated as the major species. 2-(n-Hexyl)-1,3-dithiane was also isolated in 23%.
Scheme 4
Scheme 4
Scheme 5
Scheme 5
Figure 1
Figure 1
Free energy profile (PBE0) for deterioration of lithium alkoxide and reaction with 2-phenyl-2-lithio-1,3-dithiane, and mechanistic representation. Optimized structures of minima and transition states are presented with bond distances and Wiberg indexes (in italics) for the more relevant bonds. Free energies values are presented in kcal/mol, referring to the initial intermediate A.
Figure 2
Figure 2
Free energy profile (PBE0) for nucleophilic condensation of α-disubstituted ketone with 2-phenyl-2-lithio-1,3-dithiane and mechanistic representation. Optimized structures of minima and transition states are presented with bond distances and Wiberg indexes (in italics) for the more relevant bonds. Free energies values are presented in kcal/mol, referring to the initial intermediate A from Figure 1.

Similar articles

Cited by

References

    1. Boche G.; Lohrenz J. C. W. Chem. Rev. 2001, 101, 697–756. 10.1021/cr940260x. - DOI - PubMed
    2. Wardell J. L. In Comprehensive Organometallic Chemistry; Stone F. G. A., Abel E. W., Eds.; Pergamon: Oxford, 1982; pp 43–120.
    3. Sosnovsky G.; Brown J. H. Chem. Rev. 1966, 66, 529–566. 10.1021/cr60243a003. - DOI - PubMed
    1. Müller E.; Töpel T. Ber. Dtsch. Chem. Ges. B 1939, 72, 273–290. 10.1002/cber.19390720208. - DOI
    1. Jones A. B.; Wang J.; Hamme A. T.; Han W.. Oxygen. In Encyclopedia of Reagents for Organic Synthesis; John Wiley & Sons, 2001.
    2. Boche G.; Möbus K.; Harms K.; Lohrenz J. C. W.; Marsch M. Chem. - Eur. J. 1996, 2, 604–607. 10.1002/chem.19960020521. - DOI - PubMed
    3. Julia M.; Saint-Jalmes V. P.; Verpeaux J.-N. Synlett 1993, 1993, 233–234. 10.1055/s-1993-22415. - DOI
    4. Boche G.; Bosold F.; Lohrenz J. C. W. Angew. Chem., Int. Ed. Engl. 1994, 33, 1161–1163. 10.1002/anie.199411611. - DOI
    1. Examples on the use of oxidation of organolithiums with O2:

    2. Möller M.; Husemann M.; Boche G. J. Organomet. Chem. 2001, 624, 47–52. 10.1016/S0022-328X(00)00596-9. - DOI
    3. Weber B. Synthesis 1999, 1999, 1593–1606. 10.1055/s-1999-3576. - DOI
    4. Barluenga J.; Foubelo F.; Fañanás F. J.; Yus M. Tetrahedron 1989, 45, 2183–2192. 10.1016/S0040-4020(01)80078-8. - DOI
    5. Ryckman D. M.; Stevens R. V. J. Am. Chem. Soc. 1987, 109, 4940–4948. 10.1021/ja00250a030. - DOI
    6. Hoell D.; Schnieders C.; Müllen K. Angew. Chem., Int. Ed. Engl. 1983, 22, 243–244. 10.1002/anie.198302431. - DOI
    7. Nguyen T. H.; Chau N. T.; Castanet A. S.; Nguyen K. P.; Mortier J. J. Org. Chem. 2007, 72, 3419–3429. 10.1021/jo070082a. - DOI - PubMed
    8. Einhorn J.; Luche J.-L.; Demerseman P. J. Chem. Soc., Chem. Commun. 1988, 1350.10.1039/c39880001350. - DOI
    9. Parker K. A.; Koziski K. A. J. Org. Chem. 1987, 52, 674–676. 10.1021/jo00380a034. - DOI
    1. Corey E. J.; Seebach D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1075–1077. 10.1002/anie.196510752. - DOI
    2. Corey E. J.; Seebach D. Angew. Chem., Int. Ed. Engl. 1965, 4, 1077–1078. 10.1002/anie.196510771. - DOI
    3. Seebach D.; Corey E. J. J. Org. Chem. 1975, 40, 231–237. 10.1021/jo00890a018. - DOI

Publication types

LinkOut - more resources