Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 May:111:696-705.
doi: 10.1016/j.ijbiomac.2018.01.061. Epub 2018 Jan 12.

Facile preparation and characterization of pH sensitive Mt/CMC nanocomposite hydrogel beads for propranolol controlled release

Affiliations

Facile preparation and characterization of pH sensitive Mt/CMC nanocomposite hydrogel beads for propranolol controlled release

Hassan Farhadnejad et al. Int J Biol Macromol. 2018 May.

Abstract

The main aim of the present study was to design pH-sensitive nanocomposite hydrogel beads, based on carboxymethyl cellulose (CMC) and montmorillonite (Mt)-propranolol (PPN) nanohybrid, and evaluate whether the prepared nanocomposite beads could potentially be used as oral drug delivery systems. PPN-as a model drug-was intercalated into the interlayer space of Mt clay mineral via the ion exchange procedure. The resultant nanohybrid (Mt-PPN) was applied to fabricate nanocomposite hydrogel beads by association with carboxymethyl cellulose. The characterization of test samples was performed using different techniques: X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), thermal gravity analysis (TGA), and scanning electron microscopy (SEM). The drug encapsulation efficiency was evaluated by UV-vis spectroscopy, and was found to be high for Mt/CMC beads. In vitro drug release test was performed in the simulated gastrointestinal conditions to evaluate the efficiency of Mt-PPN/CMC nanocomposite beads as a controlled-release drug carrier. The drug release profiles indicated that the Mt-PPN/CMC nanocomposite beads had high stability against stomach acid and a sustained- and controlled-release profile for PPN under the simulated intestinal conditions.

Keywords: Carboxymethyl cellulose; Drug delivery; Montmorillonite; Nanocomposite hydrogel.

PubMed Disclaimer

MeSH terms

LinkOut - more resources