Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 30;8(67):111258-111270.
doi: 10.18632/oncotarget.22770. eCollection 2017 Dec 19.

MicroRNA-34a inhibits cells proliferation and invasion by downregulating Notch1 in endometrial cancer

Affiliations

MicroRNA-34a inhibits cells proliferation and invasion by downregulating Notch1 in endometrial cancer

Zhen Wang et al. Oncotarget. .

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs composed of 18-25 nucleotides that regulate the expression of approximately 30% of human protein coding genes. Dysregulation of miRNAs plays a pivotal role in the initiation and progression of malignancies. Our study has shown that microRNA-34a (miR-34a) was upregulated in human endometrial cancer stem cells (ECSCs). However, it is unknown how miR-34a regulates endometrial cancer itself. Here, we report that miR-34a directly and functionally targeted Notch1. MiR-34a inhibited the proliferation, migration, invasion, EMT-associated phenotypes by downregulating Notch1 in endometrial cancer cells. Overexpression of miR-34a also suppressed tumor growth in nude mice. Importantly, further results suggested miR-34a was significantly downregulated in endometrial cancer tissues and negatively correlated with Notch1 expression. There was a significant association between decreased miR-34a expression and worse patient prognosis. Taken together, our results suggest that miR-34a plays tumor-suppressive roles in endometrial cancer through downregulating Notch1. Thus miR-34a could be a potential therapeutic target for prevention and treatment of endometrial cancer.

Keywords: Notch1; endometrial cancer; invasion; microRNA-34a; proliferation.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST None of the authors has any personal or financial conflicts of interest.

Figures

Figure 1
Figure 1. Tumorsphere formation and differentiation
(A) HEC-1-B cells grew as an adherent monolayer. (B) Primary tumorspheres formed in SFM medium. (C) Typical tumorspheres formed in SFM at 10 days. (D) Tumorsphere differentiated at 3 days in DMEM/F12 medium supplemented with 10% FBS. (E) High-level expression of stem cell marker CD133 in tumorspheres. (F) Oct4 and Sox2 were significantly elevated in tumorspheres compared to 5-day and 10-day differentiated cells. (Scale bar=100 μm).
Figure 2
Figure 2. Microarray analysis of miRNAs expression level in ECSCs and its differentiated cells
(A) Hierachical clustering analysis of miRNAs expression profiles in ECSCs and 10-day differentiated cells. Green represents low expression, red represents high expression, and black represents intermediate expression. (B) The expression of miR-34a was detected in ECSCs and its differentiated cells by RT-qPCR. Three independent experiments were performed. ** P < 0.01.
Figure 3
Figure 3. MiR-34a directly targets Notch1
(A, B) Notch1 mRNA and protein expression were determined in ECSCs and 10-day- differentiated cells. (C) The wild type (wt) and mutant (mut) binding sites for miR-34a in the 3’-UTR of the Notch1 gene. (D) Luciferase reporter assays. NC: non-specific negative control. Three independent experiments were performed. **P < 0.01.
Figure 4
Figure 4. The transfection of miR3-4a mimics or Notch1 siRNA
(A) HEC-1-B cells were transfected with miR-34a mimics, Notch1 siRNA and their corresponding controls for 48 h. The mRNA levels of Notch1 was determined by RT-qPCR. (B) The cells were treated as indicated above, and the protein levels of Notch1 were determined by Western blotting. NC: non-specific negative control. Three independent experiments were performed. ** P < 0.01.
Figure 5
Figure 5. Overexpression of miR-34a suppressed HEC-1-B cells proliferation, migration, invasion and EMT by targeting Notch1
(A) HEC-1-B cells were transfected with miR-34a mimics, Notch1 siRNA and corresponding controls for 48 h. The cell proliferation ability was determined by CCK-8 assay. (B, C) Colony formation assays. (D-F) Cell migration and invasion were detected using Transwell assay. (G, H) Wound healing assay. Scale bar=100 μm. (I) Protein expressions of E-cadheirn and Vimentin were measured by Western blotting. NC: non-specific negative control. Three independent experiments were performed. *P < 0.05, **P < 0.01.
Figure 6
Figure 6. Overexpression of miR-34a inhibited tumor growth and EMT in BALB/c nude mice
(A) Average of tumor volumes were measured after cells were injected. (B, C) Photograph of typical tumors grown in mice. (D) The protein expression of Notch1, E-cadherin and Vimentin was detected by Western blotting. (E) The expression of Notch1 was detected by IHC. Scale bar=190 μm. *P < 0.05, **P < 0.01.
Figure 7
Figure 7. Down-regulation of miR-34a in endometrial cancer tissues is negatively correlated with expression of Notch1
(A) Low expression of miR-34a in endometrial cancer tissues (EC tissues) compared with normal endometrial tissues (NETs). (B) The expression of miR-34a in different clinical stages of endometrial cancer patients. (C) Low expression of miR-34a in patients with lymph node metastases. (D) The expression of Notch1 was detected in normal endometrial tissues and endometrial cancer tissue by IHC. a. Normal endometrial tissues samples; b. Endometrial cancer tissues samples from patients with stage I; c. Endometrial cancer tissues samples from patients with stage II; d. Endometrial cancer tissues samples from patients with stage III ; e Endometrial cancer tissues samples from patients with stage IV. (Scale bar=70μm). (E) The pathologic score of Notch1 expression in endometrial cancer tissues. (F) The expression of miR-34a was negatively correlated with Notch1 scores in endometrial cancer. *P < 0.05, **P < 0.01.

Similar articles

Cited by

References

    1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86. https://doi.org/10.1002/ijc.29210. - DOI - PubMed
    1. Lindemann K, Eskild A, Vatten LJ, Bray F. Endometrial cancer incidence trends in Norway during 1953–2007 and predictions for 2008–2027. Int J Cancer. 2010;127:2661–8. https://doi.org/10.1002/ijc.25267. - DOI - PubMed
    1. Kerr J, Anderson C, Lippman SM. Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol. 2017;18:e457–71. https://doi.org/10.1016/S1470-2045(17)30411-4. - DOI - PMC - PubMed
    1. Shalowitz DI, Epstein AJ, Buckingham L, Ko EM, Giuntoli RL., 2nd Survival implications of time to surgical treatment of endometrial cancers. Am J Obstet Gynecol. 2017;216:268. https://doi.org/10.1016/j.ajog.2016.11.1050. - DOI - PubMed
    1. Parish SJ, Gillespie JA. The evolving role of oral hormonal therapies and review of conjugated estrogens/bazedoxifene for the management of menopausal symptoms. Postgrad Med. 2017;129:340–51. https://doi.org/10.1080/00325481.2017.1281083. - DOI - PubMed

LinkOut - more resources