Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov 30;8(67):111281-111294.
doi: 10.18632/oncotarget.22781. eCollection 2017 Dec 19.

Indomethacin-based stimuli-responsive micelles combined with paclitaxel to overcome multidrug resistance

Affiliations

Indomethacin-based stimuli-responsive micelles combined with paclitaxel to overcome multidrug resistance

Shuanghu Wang et al. Oncotarget. .

Abstract

Development of multidrug resistance against antitumor agents is a major limiting factor for the successful chemotherapy. Currently, both amphiphilic polymeric micelles and chemosensitizers have been proposed to overcome MDR during chemotherapy. Herein, the redox-responsive polymeric micelles composed of dextran and indomethacin (as chemosensitizer) using a disulfide bond as the linker are prepared (DEX-SS-IND) for delivery of antitumor agent paclitaxel (PTX). The high level of glutathione in tumor cells selectively breaks the disulfide bond, leading to the rapid breakdown and deformation of redox-responsive polymeric micelles. The data show that DEX-SS-IND can spontaneously form the stable micelles with high loading content (9.48 ± 0.41%), a favorable size of 45 nm with a narrow polydispersity (0.157), good stability, and glutathione-triggered drug release behavior due to the rapid breakdown of disulfide bond between DEX and IND. In vitro antitumor assay shows DEX-SS-IND/PTX micelles effectively inhibit the proliferation of PTX-resistant breast cancer (MCF-7/PTX) cells. More impressively, DEX-SS-IND/PTX micelles possess the improved plasma pharmacokinetics, enhanced antitumor efficacy on tumor growth in the xenograft models of MCF-7/PTX cells, and better in vivo safety. Overall, DEX-SS-IND/PTX micelles display a great potential for cancer treatment, especially for multidrug resistance tumors.

Keywords: breast cancer; drug delivery system; indomethacin; multidrug resistance; paclitaxel.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no competing financial interest.

Figures

Figure 1
Figure 1. Preparation and characterization of DEX-SS-IND/PTX micelles
(A) Schematic formation of DEX-SS-IND/PTX micelles. (B) 1H NMR spectra of dextran, indomethacin and DEX-SS-IND (a and c, -CH-, at 3∼4 ppm; b and d, -CH-, 7∼8 ppm) (C) Negative-stain transmission electron microscopy of DEX-SS-IND blank micelles and DEX-SS-IND/PTX micelles. Scale bar = 100 nm.
Figure 2
Figure 2. In vitro release behaviors and stability of DEX-SS-IND/PTX micelles
(A) and (B) In vitro stability of DEX-SS-IND/PTX micelles at 4°C, including size and PDI. (C) The size changes of DEX-SS-IND/PTX micelles in the different reduction environments. * P < 0.05. (D) PTX release of DEX-IND/PTX and DEX-SS-IND/PTX micelles in PBS 7.4 with or without 10 mM GSH. (E) PTX release of DEX-SS-IND/PTX micelles in PBS 7.4 with various concentrations of GSH. (F) and (G) NR fluorescent images and quantification of DEX-SS-IND/NR or DEX-IND/NR micelles after incubation with different concentrations of GSH for 10, 20 and 40 min.
Figure 3
Figure 3
(A) Intracellular GSH levels of MCF-7/PTX cells and BSO-pretreated MCF-7/PTX cells, * P < 0.05. (B) In vitro GSH-triggered NR release from DEX-IND/NR micelles and DEX-SS-IND/NR micelles (red) in MCF-7/PTX and BSO-pretreated MCF-7/PTX cells, Scale bar = 25 nm. (C) The semi-quantitative values of fluorescence intensity of (B). (D) Quantitative determination of GSH-triggered NR release via flow cytometry. (E) The intracellular concentration of PTX in the DEX-SS-IND/PTX micelles at different time points (6 and 24 h). Data were presented as mean ± SD (n = 3), * P < 0.05. (F) Representative western blot analysis of MRP1 in MCF-7/PTX cells treated with DEX-SS-IND,β-actin was used as control. (G) Densitometric analysis for detecting thelevels of MRP1. Values were normalized against β-actin. Data were presented as mean ± SD (n = 3), *P < 0.05.
Figure 4
Figure 4. In vitro anti-tumor activity of DEX-SS-IND/PTX micelles
(A) and (B) MTT assay of blank DEX-SS-IND and DEX-IND micelles against MCF-7 and MCF-7/PTX cells after 48 h incubation (n = 3). (C) MTT assay of PTX-based formulations against MCF-7 and MCF-7/PTX cells after 48 h incubation (n = 3), * P < 0.05. (D) and (E) Imaging and quantitative analysis of live (green) cell assay for exposure of MCF-7/PTX cells to different PTX-based formulations, Scale bar = 100 nm.
Figure 5
Figure 5
(A) Maximum tolerated dose of DEX-SS-IND/PTX (n = 3). (B) Plasma concentration-time curves after intravenous administration of Taxol, DEX-IND/PTX and DEX-SS-IND/PTX micelles (equivalent 10 mg/kg PTX). (C) Biodistribution in tissue in mice after intravenous administration of Taxol, DEX-IND/PTX and DEX-SS-IND/PTX micelles at equivalent 10 mg/kg PTX for different times (6 and 12 h). Data were presented as mean ± SD (n = 4), * P < 0.05.
Figure 6
Figure 6. In vivo antitumor efficacy of DEX-SS-IND/PTX micelles
(A) and (B) Tumor growth curves of mice after administrated with different PTX-based formulations (n = 6). (C) MCF-7/PTX xenograft tumor sections stained with H&E for the histological examination, with Ki67 for the tumor proliferation analyses and with TUNEL for the apoptosis analyses (200 ×).
Figure 7
Figure 7. Reduced systemic toxicity of PTX by DEX-SS-IND/PTX micelles
(A) and (B) Body weight changes of nude mice bearing MCF-7 and MCF-7/PTX xenograft tumors, respectively (n = 6). (C) H&E staining microphotos of heart and liver tissues of mice bearing MCF-7/PTX xenograft tumors at the end of antitumor inhibition test (200×).

References

    1. Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–234. https//doi.org/10.1038/nrd1984. - DOI - PubMed
    1. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446:749–757. https//doi.org/10.1038/nature05630. - DOI - PubMed
    1. Zhang D, Kong YY, Sun JH, Huo SJ, Zhou M, Gui YL, Mu X, Chen H, Yu SQ, Xu Q. Co-delivery nanoparticles with characteristics of intracellular precision release drugs for overcoming multidrug resistance. Int J Nanomedicine. 2017;12:2081–2108. https//doi.org/10.2147/IJN.S128790. - DOI - PMC - PubMed
    1. Cheng T, Liu J, Ren J, Huang F, Ou H, Ding Y, Zhang Y, Ma R, An Y, Liu J, Shi L. Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance. Theranostics. 2016;6:1277–1292. https//doi.org/10.7150/thno.15133. - DOI - PMC - PubMed
    1. Yuan Y, Cai T, Xia X, Zhang R, Chiba P, Cai Y. Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv. 2016;23:3350–3357. https//doi.org/10.1080/10717544.2016.1178825. - DOI - PubMed