Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 1;75(3):353-359.
doi: 10.1001/jamaneurol.2017.4317.

Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome: The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry

Affiliations

Efficacy and Safety of Deep Brain Stimulation in Tourette Syndrome: The International Tourette Syndrome Deep Brain Stimulation Public Database and Registry

Daniel Martinez-Ramirez et al. JAMA Neurol. .

Erratum in

Abstract

Importance: Collective evidence has strongly suggested that deep brain stimulation (DBS) is a promising therapy for Tourette syndrome.

Objective: To assess the efficacy and safety of DBS in a multinational cohort of patients with Tourette syndrome.

Design, setting, and participants: The prospective International Deep Brain Stimulation Database and Registry included 185 patients with medically refractory Tourette syndrome who underwent DBS implantation from January 1, 2012, to December 31, 2016, at 31 institutions in 10 countries worldwide.

Exposures: Patients with medically refractory symptoms received DBS implantation in the centromedian thalamic region (93 of 163 [57.1%]), the anterior globus pallidus internus (41 of 163 [25.2%]), the posterior globus pallidus internus (25 of 163 [15.3%]), and the anterior limb of the internal capsule (4 of 163 [2.5%]).

Main outcomes and measures: Scores on the Yale Global Tic Severity Scale and adverse events.

Results: The International Deep Brain Stimulation Database and Registry enrolled 185 patients (of 171 with available data, 37 females and 134 males; mean [SD] age at surgery, 29.1 [10.8] years [range, 13-58 years]). Symptoms of obsessive-compulsive disorder were present in 97 of 151 patients (64.2%) and 32 of 148 (21.6%) had a history of self-injurious behavior. The mean (SD) total Yale Global Tic Severity Scale score improved from 75.01 (18.36) at baseline to 41.19 (20.00) at 1 year after DBS implantation (P < .001). The mean (SD) motor tic subscore improved from 21.00 (3.72) at baseline to 12.91 (5.78) after 1 year (P < .001), and the mean (SD) phonic tic subscore improved from 16.82 (6.56) at baseline to 9.63 (6.99) at 1 year (P < .001). The overall adverse event rate was 35.4% (56 of 158 patients), with intracranial hemorrhage occurring in 2 patients (1.3%), infection in 4 patients with 5 events (3.2%), and lead explantation in 1 patient (0.6%). The most common stimulation-induced adverse effects were dysarthria (10 [6.3%]) and paresthesia (13 [8.2%]).

Conclusions and relevance: Deep brain stimulation was associated with symptomatic improvement in patients with Tourette syndrome but also with important adverse events. A publicly available website on outcomes of DBS in patients with Tourette syndrome has been provided.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Disclosures: Dr Leckman reported serving as an advisor for the European Multicentre Tics in Children Studies (EMTICS) and Tasly Pharmaceuticals LLC; receiving support from the National Institutes of Health (for research projects), the Tourette Association of America, and Grifols LLC; and receiving royalties for books published by John Wiley and Sons, McGraw-Hill, and Oxford University Press. Dr Okun reported serving as a consultant for the National Parkinson Foundation; receiving research grants from the National Institutes of Health, the National Parkinson Foundation, the Michael J. Fox Foundation, the Parkinson Alliance, Smallwood Foundation, the Bachmann-Strauss Foundation, the Tourette Syndrome Association, and the University of Florida Foundation; receiving grants R01 NR014852 and R01NS096008 from the National Institutes of Health for DBS research; receiving royalties for publications with Demos, Manson, Amazon, Smashwords, Books4Patients, and Cambridge (movement disorders books); serving as an associate editor for New England Journal of Medicine Journal Watch Neurology; participating in continuing medical education and educational activities on movement disorders (in the last 36 months) sponsored by PeerView, Prime, QuantiaMD, WebMD, Medicus, MedNet, Henry Stewart, and Vanderbilt University; and participating as a site principal investigator and/or coinvestigator for several National Institutes of Health, foundation, and industry-sponsored trials over the years but has not received honoraria. The institution and not Dr Okun received grants from Medtronic, Abbvie, Allergan, and Abbott/St Jude, and Dr Okun has no financial interest in these grants. No other disclosures were reported.

Figures

Figure.
Figure.. Yale Global Tic Severity Scale (YGTSS) Scores by Time and Brain Target
A, YGTSS motor tic scores at baseline, 6 months, and 1 year. B, YGTSS phonic tic scores at baseline, 6 months, and 1 year. C, Total YGTSS scores at baseline, 6 months, and 1 year. CM indicates centromedian; GPi, globus pallidus internus.

References

    1. Temel Y, Visser-Vandewalle V. Surgery in Tourette syndrome. Mov Disord. 2004;19(1):3-14. - PubMed
    1. Vandewalle V, van der Linden C, Groenewegen HJ, Caemaert J. Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus. Lancet. 1999;353(9154):724. - PubMed
    1. Okun MS. Deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2012;367(16):1529-1538. - PubMed
    1. Miocinovic S, Somayajula S, Chitnis S, Vitek JL. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013;70(2):163-171. - PubMed
    1. Baldermann JC, Schüller T, Huys D, et al. Deep brain stimulation for Tourette-syndrome: a systematic review and meta-analysis. Brain Stimul. 2016;9(2):296-304. - PubMed

Publication types