Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 17;13(1):e0191112.
doi: 10.1371/journal.pone.0191112. eCollection 2018.

Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: A cross-sectional, ecological study

Affiliations

Association between PM10, PM2.5, NO2, O3 and self-reported diabetes in Italy: A cross-sectional, ecological study

Riccardo Orioli et al. PLoS One. .

Abstract

Introduction: Air pollution represents a serious threat to health on a global scale, being responsible for a large portion of the global burden of disease from environmental factors. Current evidence about the association between air pollution exposure and Diabetes Mellitus (DM) is still controversial. We aimed to evaluate the association between area-level ambient air pollution and self-reported DM in a large population sample in Italy.

Materials and methods: We extracted information about self-reported and physician diagnosed DM, risk factors and socio-economic status from 12 surveys conducted nationwide between 1999 and 2013. We obtained annual averaged air pollution levels for the years 2003, 2005, 2007 and 2010 from the AMS-MINNI national integrated model, which simulates the dispersion and transformation of pollutants. The original maps, with a resolution of 4 x 4 km2, were normalized and aggregated at the municipality class of each Italian region, in order to match the survey data. We fit logistic regression models with a hierarchical structure to estimate the relationship between PM10, PM2.5, NO2 and O3 four-years mean levels and the risk of being affected by DM.

Results: We included 376,157 individuals aged more than 45 years. There were 39,969 cases of DM, with an average regional prevalence of 9.8% and a positive geographical North-to-South gradient, opposite to that of pollutants' concentrations. For each 10 μg/m3 increase, the resulting ORs were 1.04 (95% CI 1.01-1.07) for PM10, 1.04 (95% CI 1.02-1.07) for PM2.5, 1.03 (95% CI 1.01-1.05) for NO2 and 1.06 (95% CI 1.01-1.11) for O3, after accounting for relevant individual risk factors. The associations were robust to adjustment for other pollutants in two-pollutant models tested (ozone plus each other pollutant).

Conclusions: We observed a significant positive association between each examined pollutant and prevalent DM. Risk estimates were consistent with current evidence, and robust to sensitivity analysis. Our study adds evidence about the effects of air pollution on diabetes and suggests a possible role of ozone as an independent factor associated with the development of DM. Such relationship is of great interest for public health and deserves further investigation.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Estimated concentration-response curves and 95% CIs for pollutants (PM10, PM2.5, NO2, and O3) and diabetes mellitus.

References

    1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380: 2224–2260. doi: 10.1016/S0140-6736(12)61766-8 - DOI - PMC - PubMed
    1. Bauer M, Moebus S, Mhlenkamp S, Dragano N, Nonnemacher M, Fuchsluger M, et al. Urban particulate matter air pollution is associated with subclinical atherosclerosis: Results from the HNR (Heinz Nixdorf Recall) study. J Am Coll Cardiol. 2010;56: 1803–1808. doi: 10.1016/j.jacc.2010.04.065 - DOI - PubMed
    1. Künzli N, Jerrett M, Garcia-Esteban R, Basagaña X, Beckermann B, Gilliland F, et al. Ambient air pollution and the progression of atherosclerosis in adults. PLoS One. 2010;5 doi: 10.1371/journal.pone.0009096 - DOI - PMC - PubMed
    1. Bui DS, Burgess JA, Matheson MC, Erbas B, Perret J, Morrison S, et al. Ambient wood smoke, traffic pollution and adult asthma prevalence and severity. Respirology. 2013;18: 1101–1107. doi: 10.1111/resp.12108 - DOI - PubMed
    1. Kunzli N, Bridevaux P-O, Liu L-JS, Garcia-Esteban R, Schindler C, Gerbase MW, et al. Traffic-related air pollution correlates with adult-onset asthma among never-smokers. Thorax. 2009;64: 664–670. doi: 10.1136/thx.2008.110031 - DOI - PubMed

Substances