Digging deeper on "deep" learning: A computational ecology approach
- PMID: 29342699
- DOI: 10.1017/S0140525X1700005X
Digging deeper on "deep" learning: A computational ecology approach
Abstract
We propose an alternative approach to "deep" learning that is based on computational ecologies of structurally diverse artificial neural networks, and on dynamic associative memory responses to stimuli. Rather than focusing on massive computation of many different examples of a single situation, we opt for model-based learning and adaptive flexibility. Cross-fertilization of learning processes across multiple domains is the fundamental feature of human intelligence that must inform "new" artificial intelligence.
Comment in
-
Ingredients of intelligence: From classic debates to an engineering roadmap.Behav Brain Sci. 2017 Jan;40:e281. doi: 10.1017/S0140525X17001224. Behav Brain Sci. 2017. PMID: 29342708
Comment on
-
Building machines that learn and think like people.Behav Brain Sci. 2017 Jan;40:e253. doi: 10.1017/S0140525X16001837. Epub 2016 Nov 24. Behav Brain Sci. 2017. PMID: 27881212
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
