Ingredients of intelligence: From classic debates to an engineering roadmap
- PMID: 29342708
- DOI: 10.1017/S0140525X17001224
Ingredients of intelligence: From classic debates to an engineering roadmap
Abstract
We were encouraged by the broad enthusiasm for building machines that learn and think in more human-like ways. Many commentators saw our set of key ingredients as helpful, but there was disagreement regarding the origin and structure of those ingredients. Our response covers three main dimensions of this disagreement: nature versus nurture, coherent theories versus theory fragments, and symbolic versus sub-symbolic representations. These dimensions align with classic debates in artificial intelligence and cognitive science, although, rather than embracing these debates, we emphasize ways of moving beyond them. Several commentators saw our set of key ingredients as incomplete and offered a wide range of additions. We agree that these additional ingredients are important in the long run and discuss prospects for incorporating them. Finally, we consider some of the ethical questions raised regarding the research program as a whole.
Comment on
-
Theories or fragments?Behav Brain Sci. 2017 Jan;40:e258. doi: 10.1017/S0140525X17000073. Behav Brain Sci. 2017. PMID: 29342683
-
The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction.Behav Brain Sci. 2017 Jan;40:e254. doi: 10.1017/S0140525X17000036. Behav Brain Sci. 2017. PMID: 29342684
-
Back to the future: The return of cognitive functionalism.Behav Brain Sci. 2017 Jan;40:e257. doi: 10.1017/S0140525X17000061. Behav Brain Sci. 2017. PMID: 29342686
-
Deep-learning networks and the functional architecture of executive control.Behav Brain Sci. 2017 Jan;40:e261. doi: 10.1017/S0140525X17000103. Behav Brain Sci. 2017. PMID: 29342687
-
Children begin with the same start-up software, but their software updates are cultural.Behav Brain Sci. 2017 Jan;40:e260. doi: 10.1017/S0140525X17000097. Behav Brain Sci. 2017. PMID: 29342688
-
What can the brain teach us about building artificial intelligence?Behav Brain Sci. 2017 Jan;40:e265. doi: 10.1017/S0140525X17000140. Behav Brain Sci. 2017. PMID: 29342690
-
Thinking like animals or thinking like colleagues?Behav Brain Sci. 2017 Jan;40:e263. doi: 10.1017/S0140525X17000127. Behav Brain Sci. 2017. PMID: 29342691
-
Evidence from machines that learn and think like people.Behav Brain Sci. 2017 Jan;40:e264. doi: 10.1017/S0140525X17000139. Behav Brain Sci. 2017. PMID: 29342692
-
Understand the cogs to understand cognition.Behav Brain Sci. 2017 Jan;40:e272. doi: 10.1017/S0140525X17000218. Behav Brain Sci. 2017. PMID: 29342693
-
Crossmodal lifelong learning in hybrid neural embodied architectures.Behav Brain Sci. 2017 Jan;40:e280. doi: 10.1017/S0140525X17000292. Behav Brain Sci. 2017. PMID: 29342694
-
Social-motor experience and perception-action learning bring efficiency to machines.Behav Brain Sci. 2017 Jan;40:e273. doi: 10.1017/S0140525X1700022X. Behav Brain Sci. 2017. PMID: 29342695
-
Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning.Behav Brain Sci. 2017 Jan;40:e275. doi: 10.1017/S0140525X17000243. Behav Brain Sci. 2017. PMID: 29342696
-
The fork in the road.Behav Brain Sci. 2017 Jan;40:e278. doi: 10.1017/S0140525X17000279. Behav Brain Sci. 2017. PMID: 29342697
-
Avoiding frostbite: It helps to learn from others.Behav Brain Sci. 2017 Jan;40:e279. doi: 10.1017/S0140525X17000280. Behav Brain Sci. 2017. PMID: 29342698
-
Digging deeper on "deep" learning: A computational ecology approach.Behav Brain Sci. 2017 Jan;40:e256. doi: 10.1017/S0140525X1700005X. Behav Brain Sci. 2017. PMID: 29342699
-
Building brains that communicate like machines.Behav Brain Sci. 2017 Jan;40:e266. doi: 10.1017/S0140525X17000152. Behav Brain Sci. 2017. PMID: 29342700
-
Building on prior knowledge without building it in.Behav Brain Sci. 2017 Jan;40:e268. doi: 10.1017/S0140525X17000176. Behav Brain Sci. 2017. PMID: 29342701
-
Will human-like machines make human-like mistakes?Behav Brain Sci. 2017 Jan;40:e270. doi: 10.1017/S0140525X1700019X. Behav Brain Sci. 2017. PMID: 29342702
-
The humanness of artificial non-normative personalities.Behav Brain Sci. 2017 Jan;40:e259. doi: 10.1017/S0140525X17000085. Behav Brain Sci. 2017. PMID: 29342703
-
The importance of motivation and emotion for explaining human cognition.Behav Brain Sci. 2017 Jan;40:e267. doi: 10.1017/S0140525X17000164. Behav Brain Sci. 2017. PMID: 29342704
-
Building machines that adapt and compute like brains.Behav Brain Sci. 2017 Jan;40:e269. doi: 10.1017/S0140525X17000188. Behav Brain Sci. 2017. PMID: 29342705
-
Benefits of embodiment.Behav Brain Sci. 2017 Jan;40:e271. doi: 10.1017/S0140525X17000206. Behav Brain Sci. 2017. PMID: 29342706
-
Human-like machines: Transparency and comprehensibility.Behav Brain Sci. 2017 Jan;40:e276. doi: 10.1017/S0140525X17000255. Behav Brain Sci. 2017. PMID: 29342707
-
The argument for single-purpose robots.Behav Brain Sci. 2017 Jan;40:e274. doi: 10.1017/S0140525X17000231. Behav Brain Sci. 2017. PMID: 29342709
-
Intelligent machines and human minds.Behav Brain Sci. 2017 Jan;40:e277. doi: 10.1017/S0140525X17000267. Behav Brain Sci. 2017. PMID: 29342710
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
