Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 30;122(7):958-969.
doi: 10.1161/CIRCRESAHA.117.311578. Epub 2018 Jan 17.

Lack of Remuscularization Following Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitor Cells in Infarcted Nonhuman Primates

Affiliations
Free article

Lack of Remuscularization Following Transplantation of Human Embryonic Stem Cell-Derived Cardiovascular Progenitor Cells in Infarcted Nonhuman Primates

Keyang Zhu et al. Circ Res. .
Free article

Abstract

Rationale: Human pluripotent stem cell-derived cardiovascular progenitor cells (hPSC-CVPCs) should be thoroughly investigated in large animal studies before testing in clinical trials.

Objective: The main of this study is to clarify whether hPSC-CVPCs can engraft for long time in the heart of primates after myocardial infarction (MI) and compare the effectiveness and safety of immunosuppression with cyclosporine alone or multiple-drug regimen (MDR) containing cyclosporine, methylprednisolone, and basiliximab in cynomolgus monkeys that had received intramyocardial injections of 1×107 EGFP (enhanced green fluorescent protein)-expressing hPSC-CVPCs after MI. A third group of animals received the immunosuppression MDR but without cell therapy after MI (MI+MDR group).

Methods and results: Measurements of EGFP gene levels and EGFP immunofluorescence staining indicated that the hPSC-CVPC engraftment rate was greater in the MI+MDR+CVPC group than that in the MI+cyclosporine+CVPC group. However, even in the MI+MDR+CVPC group, no transplanted cells could be detected at 140 days after transplantation. Concomitantly, immunofluorescent analysis of CD3, CD4, and CD8 expression indicated that T-lymphocyte infiltration in the CVPC-transplanted hearts was less in the MDR-treated animals than in the cyclosporine-alone-treated animals. The recovery of left ventricular function on day 28 post-MI in the MI+MDR+CVPC group was better than that in the MI+MDR group. Apoptotic cardiac cells were also less common in the MI+MDR+CVPC group than in the MI+MDR group, although both immunosuppression regimens were associated with transient hepatic dysfunction.

Conclusions: This is the largest study of hPSCs in nonhuman primates in cardiovascular field to date (n=32). Compared with cyclosporine alone, MDR attenuates immune rejection and improves survival of hPSC-CVPCs in primates; this is associated with less apoptosis of native cardiac cells and better recovery of left ventricular function at 28 days. However, even with MDR, transplanted hPSC-CVPCs do not engraft and do not survive at 140 days after transplantation, thereby excluding remuscularization as a mechanism for the functional effect.

Keywords: human embryonic stem cells; immunosuppression; primates; transplantation.

PubMed Disclaimer

Publication types

MeSH terms