Mechanically Coupled Reaction-Diffusion Model to Predict Glioma Growth: Methodological Details
- PMID: 29344892
- PMCID: PMC6530463
- DOI: 10.1007/978-1-4939-7493-1_11
Mechanically Coupled Reaction-Diffusion Model to Predict Glioma Growth: Methodological Details
Abstract
Biophysical models designed to predict the growth and response of tumors to treatment have the potential to become a valuable tool for clinicians in care of cancer patients. Specifically, individualized tumor forecasts could be used to predict response or resistance early in the course of treatment, thereby providing an opportunity for treatment selection or adaption. This chapter discusses an experimental and modeling framework in which noninvasive imaging data is used to initialize and parameterize a subject-specific model of tumor growth. This modeling approach is applied to an analysis of murine models of glioma growth.
Keywords: Biophysical stress; Cancer; Diffusion; Finite difference method; Invasion; MRI.
Figures




Similar articles
-
Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer.Int J Radiat Oncol Biol Phys. 2018 Apr 1;100(5):1270-1279. doi: 10.1016/j.ijrobp.2017.12.004. Epub 2017 Dec 13. Int J Radiat Oncol Biol Phys. 2018. PMID: 29398129 Free PMC article.
-
Calibrating a Predictive Model of Tumor Growth and Angiogenesis with Quantitative MRI.Ann Biomed Eng. 2019 Jul;47(7):1539-1551. doi: 10.1007/s10439-019-02262-9. Epub 2019 Apr 8. Ann Biomed Eng. 2019. PMID: 30963385 Free PMC article.
-
Brain glioma growth model using reaction-diffusion equation with viscous stress tensor on brain MR images.Magn Reson Imaging. 2016 Feb;34(2):114-9. doi: 10.1016/j.mri.2015.10.012. Epub 2015 Oct 27. Magn Reson Imaging. 2016. PMID: 26518060
-
Advances in Magnetic Resonance Imaging and Positron Emission Tomography Imaging for Grading and Molecular Characterization of Glioma.Semin Radiat Oncol. 2015 Jul;25(3):164-71. doi: 10.1016/j.semradonc.2015.02.002. Epub 2015 Feb 23. Semin Radiat Oncol. 2015. PMID: 26050586 Review.
-
Advances in Magnetic Resonance and Positron Emission Tomography Imaging: Assessing Response in the Treatment of Low-Grade Glioma.Semin Radiat Oncol. 2015 Jul;25(3):172-80. doi: 10.1016/j.semradonc.2015.02.003. Epub 2015 Feb 21. Semin Radiat Oncol. 2015. PMID: 26050587 Free PMC article. Review.
Cited by
-
Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology.Biophys Rev (Melville). 2022 Jun;3(2):021304. doi: 10.1063/5.0086789. Epub 2022 May 17. Biophys Rev (Melville). 2022. PMID: 35602761 Free PMC article. Review.
-
Inverse Problem Regularization for 3D Multi-Species Tumor Growth Models.Int J Numer Method Biomed Eng. 2025 Jul;41(7):e70057. doi: 10.1002/cnm.70057. Int J Numer Method Biomed Eng. 2025. PMID: 40629688 Free PMC article.
-
Validating the predictions of mathematical models describing tumor growth and treatment response.ArXiv [Preprint]. 2025 Feb 26:arXiv:2502.19333v1. ArXiv. 2025. PMID: 40061122 Free PMC article. Preprint.
-
Designing clinical trials for patients who are not average.iScience. 2023 Nov 29;27(1):108589. doi: 10.1016/j.isci.2023.108589. eCollection 2024 Jan 19. iScience. 2023. PMID: 38169893 Free PMC article. Review.
-
Post-Radiotherapy PET Image Outcome Prediction by Deep Learning Under Biological Model Guidance: A Feasibility Study of Oropharyngeal Cancer Application.Front Oncol. 2022 May 13;12:895544. doi: 10.3389/fonc.2022.895544. eCollection 2022. Front Oncol. 2022. PMID: 35646643 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical