Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Mar 26;57(14):3631-3635.
doi: 10.1002/anie.201712792. Epub 2018 Feb 14.

Total Synthesis and Conformational Study of Callyaerin A: Anti-Tubercular Cyclic Peptide Bearing a Rare Rigidifying (Z)-2,3- Diaminoacrylamide Moiety

Affiliations

Total Synthesis and Conformational Study of Callyaerin A: Anti-Tubercular Cyclic Peptide Bearing a Rare Rigidifying (Z)-2,3- Diaminoacrylamide Moiety

Shengping Zhang et al. Angew Chem Int Ed Engl. .

Abstract

The first synthesis of the anti-TB cyclic peptide callyaerin A (1), containing a rare (Z)-2,3-diaminoacrylamide bridging motif, is reported. Fmoc-formylglycine-diethylacetal was used as a masked equivalent of formylglycine in the synthesis of the linear precursor to 1. Intramolecular cyclization between the formylglycine residue and the N-terminal amine in the linear peptide precursor afforded the macrocyclic natural product 1. Synthetic 1 possessed potent anti-TB activity (MIC100 =32 μm) while its all-amide congener was inactive. Variable-temperature NMR studies of both the natural product and its all-amide analogue revealed the extraordinary rigidity imposed by this diaminoacrylamide unit on peptide conformation. The work reported herein pinpoints the intrinsic role that the (Z)-2,3-diaminoacrylamide moiety confers on peptide bioactivity.

Keywords: conformation analysis; cyclizations; drug discovery; natural products; peptides.

PubMed Disclaimer

Publication types

LinkOut - more resources