Genome-wide analysis of disease progression in age-related macular degeneration
- PMID: 29346644
- PMCID: PMC6059197
- DOI: 10.1093/hmg/ddy002
Genome-wide analysis of disease progression in age-related macular degeneration
Abstract
Family- and population-based genetic studies have successfully identified multiple disease-susceptibility loci for Age-related macular degeneration (AMD), one of the first batch and most successful examples of genome-wide association study. However, most genetic studies to date have focused on case-control studies of late AMD (choroidal neovascularization or geographic atrophy). The genetic influences on disease progression are largely unexplored. We assembled unique resources to perform a genome-wide bivariate time-to-event analysis to test for association of time-to-late-AMD with ∼9 million variants on 2721 Caucasians from a large multi-center randomized clinical trial, the Age-Related Eye Disease Study. To our knowledge, this is the first genome-wide association study of disease progression (bivariate survival outcome) in AMD genetic studies, thus providing novel insights to AMD genetics. We used a robust Cox proportional hazards model to appropriately account for between-eye correlation when analyzing the progression time in the two eyes of each participant. We identified four previously reported susceptibility loci showing genome-wide significant association with AMD progression: ARMS2-HTRA1 (P = 8.1 × 10-43), CFH (P = 3.5 × 10-37), C2-CFB-SKIV2L (P = 8.1 × 10-10) and C3 (P = 1.2 × 10-9). Furthermore, we detected association of rs58978565 near TNR (P = 2.3 × 10-8), rs28368872 near ATF7IP2 (P = 2.9 × 10-8) and rs142450006 near MMP9 (P = 0.0006) with progression to choroidal neovascularization but not geographic atrophy. Secondary analysis limited to 34 reported risk variants revealed that LIPC and CTRB2-CTRB1 were also associated with AMD progression (P < 0.0015). Our genome-wide analysis thus expands the genetics in both development and progression of AMD and should assist in early identification of high risk individuals.
Figures
References
-
- Fritsche L.G., Igl W., Bailey J.N., Grassmann F., Sengupta S., Bragg-Gresham J.L., Burdon K.P., Hebbring S.J., Wen C., Gorski M.. et al. (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet., 48, 134–143. - PMC - PubMed
-
- Chen W., Stambolian D., Edwards A.O., Branham K.E., Othman M., Jakobsdottir J., Tosakulwong N., Pericak-Vance M.A., Campochiaro P.A., Klein M.L.. et al. (2010) Genetic variants near TIMP3 and high-density lipoprotein-associated loci influence susceptibility to age-related macular degeneration. Proc. Natl. Aacd Sci. U.S.A., 107, 7401–7406. - PMC - PubMed
-
- Seddon J.M., Francis P.J., George S., Schultz D.W., Rosner B., Klein M.L. (2007) Association of CFH Y402H and LOC387715 A69S with progression of age-related macular degeneration. JAMA, 297, 1793–1800. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
